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Due to the frequency of cervical spine injuries in canines, the purpose of this effort was to develop an
EMG-driven dynamic model of the canine cervical spine to assess a biomechanical understanding that
enables one to investigate the risk of neck disorders. A canine subject was recruited in this investigation
in order to collect subject specific data. Reflective markers and a motion capture system were used for
kinematic measurement; surface electrodes were used to record electromyography signals, and with
the aid of force plate kinetics were recorded. A 3D model of the canine subject was reconstructed from
an MRI dataset. Muscles lines of action were defined through a new technique with the aid of 3D white
light scanner. The model performed well with a 0.73 weighted R2 value in all three planes. The weighted
average absolute error of the predicted moment was less than 10% of the external moment. The proposed
model is a canine specific forward-dynamics model that precisely tracks the canine subject head and neck
motion, calculates the muscle force generated from the twelve major moment producing muscles, and
estimates resulting loads on specific spinal tissues.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The large breed dogs are particularly susceptible to cervical
spine injuries because of the large moment generated by the head
relative to the base of the spine (Breit and Künzel, 2004; Crisco
et al., 1990; Jeffery et al., 2013). In order to develop a better under-
standing of preventive strategies and effective therapeutic inter-
ventions, a more quantitative appreciation of canine cervical
spine biomechanics is desirable, since a detailed biomechanical
knowledge of the frequent sites of cervical spine injury is required.
Biologically-assisted biomechanical models provide a viable envi-
ronment to understand spine tissue loading in vivo. Once devel-
oped, these models are capable of helping to understand
potential injury risk by accounting for how muscles are dynami-
cally recruited and how the patterns of muscles recruitment collec-
tively impose forces on tissues under various daily activities. It is
believed that this model will significantly help to understand
canine cervical spine kinematics which is still not well understood
(Johnson et al., 2011). In addition, such a model can help us
understand the implications of contemplated surgeries on the
biomechanical behavior of the spine. Beyond the application of
canine cervical spine biomechanical models in veterinary medi-
cine, these models could be used further to better understand com-
plex biomechanical relationships and the knowledge gained can be
translated and applied to human spine models. In vivo studies on
canines can be easily conducted and used to validate overall
subject-specific model outputs. Moreover, this model will provide
a suitable platform to explore the validity of canine cervical spine
models that have been employed extensively for investigating
effects of spinal instruments developed for human spine
(Autefage et al., 2012; Lim et al., 1994; Sharir et al., 2006; Sheng
et al., 2010). Several human cervical spine models have been devel-
oped and validated the human spine (Horst et al., 1997; Hyeonki
Choi, 2010; Jager et al., 1996; Lopik and Acar, 2007; Snijders
et al., 1991; Stemper et al., 2004; Vasavada et al., 1998), however
in spite of the high frequency of spinal injuries in canines (Foss
et al., 2013; Jeffery et al., 2013), attempts to develop canine cervi-
cal spine models have been lacking.

The EMG-driven biomechanical modeling approach is believed
to accurately estimate spinal loads since it accounts for realistic
antagonist muscle co-contraction during dynamic physical activi-
ties while account for individual variability across subjects and
conditions in muscle recruitment.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jelekin.2016.12.008&domain=pdf
http://dx.doi.org/10.1016/j.jelekin.2016.12.008
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Therefore, the objective of this study was to develop a canine
specific EMG-driven cervical spine model that would be sensitive
to dynamic physical exertions of the cervical spine and capable
of accurately predicting internal moments and spinal tissue load-
ing profiles.
2. Methods

2.1. Modeling approach

We applied well developed human spine modeling concepts to
the development of a canine cervical spine biomechanical model
(Marras and Granata, 1997; Theado et al., 2007). Several experi-
mentally measured parameters were incorporated as model inputs
to predict the resultant internal moments and spinal loads as
model outputs (Fig. 1). Below we briefly describe how the model
inputs were acquired and implemented into the model.
2.1.1. Muscle modeling
Muscle function is represented as a three-dimensional vector

function of force magnitude and force direction via dynamic mus-
cle lines of action. Dynamic tensile force of a muscle (j) is esti-
mated (Eq. (1)) as the product of muscle gain ratio (GainRatiojÞ,
EMG (EMGj), muscle cross-section area (AreajÞ, while taking into
account the force-length (f ðLjðtÞÞÞ and force-velocity ðf ðVjðtÞÞÞ rela-
tionship of the muscles (Theado et al., 2007). Raw EMG signals pro-
cessing are described in detail by (Dufour et al., 2013). Moment
generated by the muscles (M) were calculated via summation of
vector products between muscle (j) tensile force (F) and its
moment arm (r) at every time point during the dynamic trial (Eq.
(2)) (Theado et al., 2007).

Muscle moment arm is defined as the perpendicular distance of
muscle line of action from the joint axis of rotation (Vasavada et al.,
1998). The model is operating such that the gain ratio for each
muscle was predicted within a calibration trial, in order to person-
alize muscle forces for the canine subject similar to the technique
that was developed by Dufour et al. (2013) for human lumbar spine
Fig. 1. Display of the ove
muscles. Once these parameters for each muscle were specified,
they were applied to analyze collected trials performed by the
canine subject. In order to accurately estimate muscle gain ratio,
an optimization algorithm had been used to minimize error
between muscles’ internal moments and external moments about
cervical spine joints. Based on the anatomical properties of muscles
in this model, the objective function of calibration algorithm aimed
to minimize moment prediction errors in two joints, C1/C2 and
C7/T1. The boundary conditions for the calibration procedure used
here were originally developed for the human lumbar spine.
However, previous studies have shown relatively similar muscle
parameters between humans and canines (McCully and Faulkner,
1983).

FjðtÞ ¼ GainRatioj � Areaj � EMGjðtÞ � f ½LjðtÞ�:f ½VjðtÞ� ð1Þ

M ¼
X10

j¼1

rj
!ðtÞ � Fj

!
ðtÞ ð2Þ

Due to the lack of comprehensive canine neck muscle proper-
ties to approximate muscle lines of action and cross-sectional
areas, the best technique for determining these parameters for this
model had to be investigated. Medical imaging techniques like
magnetic resonance imaging (MRI) and cadaveric experiments
are two of the most well established methods to measure muscle
moment arms and to define muscle line of action (Borst et al.,
2011; Dumas et al., 1991; Macintosh and Bogduk, 1991; Németh
and Ohlsén, 1986). However there are many sources of inaccura-
cies associated with these techniques. First, and the most probable
shortcoming was that of the partial volume effect phenomena,
where a large bias can be introduced in measured parameters on
medical images (Soret et al., 2007). Second, scan planes are gener-
ally perpendicular to the scan table while the direction of the mus-
cles are most probably oblique to the scan plane, consequently
cross-sectional areas (CSA) derived from images are typically over-
estimated (Jorgensen et al., 2003). Adjusting the CSA for muscle
fiber angle can reduce this error, however, muscle fiber directions
are often not detectable via MRI. Considering individual variability
rall modeling logic.
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across subjects, it is impossible to correct CSA for the subject-
specific models with medical images. Third, distinguishing muscles
and separating them from one another requires a thorough knowl-
edge of cross-sectional anatomy as well as powerful MRI imaging
to be able to visually differentiate muscles. In order to reduce error
introduced by these limitations in the model, an alternative
approach was investigated to determine muscle line of action.

The application of a three-dimensional white light scanner
(3DWLS) (Artec Eva, Artec, Palo Alto, CA, USA) to determine muscle
lines of action while minimizing medical imaging shortcomings
was investigated. The Artec Eva 3D scanner consists of a portable
camera that dynamically captures 3D geometry data and surface
information at up to 15 Hz. It is an ideal tool for medical scanning
purposes because: (a) the 3D scanner is able to provide a 3D view
of an object to help identify cervical spine muscles in their complex
geometrical arrangement; and, (b) the scanner is capable of provid-
ing high resolution images while capturing texture at high speed.
One advantage of this approach is that measurements such as fiber
angles and muscle cross-sections are taken directly from intact
muscles without disturbing muscle attachments. Therefore, more
accurate measurements in comparison to previous direct dissec-
tion cadaveric studies would be expected. A cadaver dog, similar
to the subject, euthanized for another research protocol unrelated
to this study was used to test the proposed technique for determin-
ing canine cervical muscle lines of action.

The dog specimen dissection process started by removing the
skin and underlying subcutaneous fat and connective tissue until
the superficial muscle was exposed in the neck region. Then, the
3DWLS was used to scan the exposed muscle. Next, every single
muscle in the neck region was removed carefully one at a time,
and the 3DWLS was used to capture the surface information of
the next layer of exposed intact muscle. Within post processing
muscle volume was then defined as a volume between two consec-
utive scans obtained in the order as described previously. Each
muscle’s line of action was then approximated by the three dimen-
sional centroid path of that muscle (Jaeger et al., 2011). Finally, to
reduce modeling complexity a straight line was fitted to the cen-
troid path obtained by multiple planes (Jaeger et al., 2011) and fur-
ther used as the straight muscle line of action.

Among the many muscles in the neck, six muscle pairs were
chosen based on their moment arm length, their cross-sectional
area, and their accessibility via surface electromyography
electrodes. These twelve muscles were: left/right sternomastoid,
left/right obliquus capitis, left/right splenius, left/right biventer,
left/right complexus, and left/right longissimus. Anatomically, the
splenius muscle is located dorsal to the biventer and complexus
muscles, with a larger cross-sectional area and moment arm. This
indicated that more activation was expected to be seen from the
Fig. 2. Dynamic model of the canine cervical spine with straight line muscles. long
biventer.
splenius than the biventer and complexus muscles. Considering
the capability of surface electrodes on detecting different signals,
it was not practical to locate separate electrodes for the splenius,
biventer and complexus muscles. Therefore, we recorded splenius
activity by EMG electrodes and we assumed the same recruitment
pattern shape would apply to the biventer and complexus muscles.

2.1.2. Geometry reconstruction
In order to generate the subject-specific anatomical model, the

canine subject underwent MRI imaging. A series of image post-
processing operations were performed on the MRI images in order
to obtain a detailed three-dimensional model of the canine cervical
spine (Skull - T1).

2.1.3. Ligaments and intervertebral disc modeling
Ligaments were modeled as passive force vectors located

between two points representing ligament attachment points
(Kumar, 2012). The nuchal ligament, dorsal atlanto-occipital mem-
brane, lateral atlanto-occipital membrane, dorsal atlanto-axial
ligament, ventral atlanto-axial membrane, alar ligament, trans-
verse atlantal ligament, apical ligament, alar ligament, apical liga-
ment, ventral longitudinal ligament, dorsal longitudinal ligament,
yellow ligament, interspinous ligament, and capsular ligament
were all incorporated in the model. The width of the ligament
was represented using multi force vectors to ensure that the force
could encompass the complete physiological width of the liga-
ment. Due to lack of canine ligament properties, human cervical
spine ligament properties were used in the model instead (Han
et al., 2012). Intervertebral discs geometry at each cervical spine
level was reconstructed from the MRI dataset and its material
properties obtained from the literature (Zimmerman et al., 1992).
The intervertebral discs were modeled as three dimensional spring
dampers located at the center of the disc space for each motion
segment. Therefore, at each spinal joint there is an intervertebral
disc and anatomically matched ligaments in order to stabilize the
joint. The atlanto-occipital and atlanto-axial joints are two com-
plex joints with a shared common joint capsule. Cartilage at these
joints was modeled as three dimensional spring dampers with
stiffness properties similar to cartilage stiffness (Jaumard et al.,
2011). The final 3D dynamic model of canine cervical spine is
shown in Fig. 2.

2.2. Modeling approach

2.2.1. Experimental tasks and training
A skeletally mature male hound (26.0 kg body weight) served as

the subject in this study. The dog was examined by a veterinarian
and documented to be healthy, with no evidence of joint or spinal
issimus, complexus, sternocleidomastoid, splenius, obliquus capitis,
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disease. The dog was housed in a roomwith other dogs and was fed
a standard laboratory dog chow with water ad libitum. During
three weeks before data collection, the dog was trained using food
treats to allow for passive manipulation of the head and neck via a
soft head collar (Gentle Leader, Suffolk, UK). Beginning from the
neutral position, various exertion trials ranging from simple deep
flexion/extension to more complex exertions including axial rota-
tion and lateral bending were performed. Movements were
repeated with the head and neck turning from the left to the right
side and for motion of the head and neck in trajectory of oblique
flexion and extension. After going through all motion sequences,
a latex resistance band (TheraBand, Akron, OH, USA) was attached
to the head collar at the mandibular part of the collar. The opposite
end of the resistance band was manually held with the hand placed
in a fixed position on the floor and the resistance band perpendic-
ular to the floor, so that no traction was applied to the resistance
band when the head was in neutral position. The sequence of pas-
sive head/neck movements was then repeated with the resistance
band in place. In order to slowly acclimate the dog to the resis-
tance, training during the first week was carried out with a band
of medium resistance and during subsequent training sessions
(week 2 and 3) and at the testing day with a band of higher
resistance.
2.2.2. Subject
The experimental procedures for this study were reviewed and

approved by the local institutional animal care and use committee
(IACUC). During the experiment, the dog was encouraged to follow
food treats to resemble the training procedure. The resistance band
in the experimental trial was not manually held, but fixed on the
force plate on ground level (Fig. 3).
2.2.3. Data collection system (Apparatus)
Bipolar surface electrodes were placed over 8 neck muscles

(four pairs of muscles). EMG data was collected with a MA300-
XVI Advanced Multi-channel EMG System (Motion Lab Systems
Incorporated, Baton Rouge, Louisiana, USA) at 1000 HZ collection
frequency. The latex resistance band force and moment were mea-
sured via a force plate (Bertec 4060A; Bertec, Worthington, OH,
USA). An OptiTrack optical motion capture system (NaturalPoint,
Fig. 3. Trial set up: the subject is placed on two force plates, the latex resistance
band (TheraBand, Akron, OH, USA) is connected to the neck of the mandibular part
of the soft head collar on one end and to the force plate from the other end. The
subject was naturally with its own intention pulling against the latex resistance
band in order to eat the food treat.
Corvallis, OR, USA) with 24 Flex 3 infrared cameras was used to
capture optical marker locations during the experiment via Opti-
Track’s Motive software. Custom software developed at the Ohio
State University Spine Research Institute was used to record analog
signals through a NI USB-6225 Data Acquisition Device (National
Instruments, Austin, TX, USA) and to control and sync optical data
collection.
2.2.4. Kinematic and kinetic data acquisition
Three reflective markers (optical) were attached to the bony

landmarks of the head: (1) left frontal process, (2) right temporo-
zygomatic bone, and (3) left nasal bone. Three more markers were
attached to a small solid panel made of plastic that was tightly
secured to the back of the dog to serve as a rigid body. Three more
reflective markers were glued to the neck in the areas of the spi-
nous processes of C2, C5 and C7 and two additional markers were
placed on the spine of the scapula to represent shoulder movement
(Fig. 4). The optical marker locations were recorded during each
trial by the motion capture system. Optical marker position data
was then used to calculate the kinematics of the head, neck and
back. Developing a multi-segmental model allowed us to define
angular displacement for each joint based on the data recorded
by the motion capture system.

Force and moment data from the force plate and inertial
moment contributions of the head and vertebral bodies together,
were served to define the total external moment.
2.2.4.1. Muscle EMG data acquisition. EMG activities of the four
pairs of extensor/flexor neck muscles were recoded using surface
electrodes. The investigated muscles were: left/right obliquus capi-
tis, left/right splenius, left/right longissimus, and left/right stern-
ocleidomastoid (Fig. 5). These muscles were chosen since they
are all major power producing neck muscles based on their
cross-section area, and functionality. The EMG electrodes were
located on shaved, cleaned and alcohol treated skin based upon a
study of the anatomical description of muscle locations (Alizadeh
et al., submitted for publication). The skin preparation was similar
to previously published paper (Marras and Davis, 2001).

MRI imaging was scheduled after the experimental part in order
to precisely document the anatomical features of the vertebral
bodies. T1 and T2 weighted MRI images were acquired on a 3T
MRI scanner (Magnetom Trio, Siemens Healthcare, Erlangen, Ger-
many). Transverse slices of 1 mm thickness were obtained from
the skull level and extended caudally to the level of the second tho-
racic vertebra. This imaging session was also used to validate the
EMG electrode and optical marker location. The locations of the
EMG electrodes were indicated with diagnostic MRI markers.
These markers showed up well in the imaging allowing each elec-
trode to be paired with the correct target muscle. In addition, cus-
tom made dual modality markers were used to line up optical
motion capture data with the MRI data. These consisted of diagnos-
tic MRI markers embedded within optical motion capture markers
(Fig. 6).
3. Results

3.1. Validation

Based on the findings of Dufour et al. (2013), the acceptable
range for gain ratio of 6–131 N/cm2 V was adopted to represent
the physiological acceptable range of gain in humans (Granata
and Marras, 1993). The gain ratio for each muscle calculated in this
study was between 30 and 80, which fell within the predicted
physiological range previously reported for human spine.



Fig. 4. Kinematic data collection: (a) Reflective optical markers. (b) Optical motion capture camera. (c) Location of reflective optical markers in order to measure joint angles:
Head markers, Neck markers, Shoulder markers, UpperTorso markers.

Fig. 5. Surface electromyography (EMG) electrode location, Obliquus capitis, Splenius, Longissimus, Sternocleidomastoideus.

Fig. 6. (a) MRI diagnostic marker, (b) dual modality marker (cut in half for clarity), replacing reflective optical markers, (c) location of EMG electrodes and dual modality
markers, (d) replaced EMG electrodes with MRI diagnostic marker.
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The reliability of the model was investigated by comparing the
measured resultant dynamic external moment to the predicted
internal moment produced by the muscles and ligaments in both
the sagittal and axial planes via their correlation coefficient (R2)
and average absolute error (AAE). Comparison of the measured
external moment and the predicted internal moment (over time)
is illustrated in Fig. 7. The model performed well with a 0.73
weighted R2 value in multiple planes, considering each plane con-
tribution in generated moment. The weighted average absolute
error of the predicted moment was less than 10% of the external
moment in the calibration trial.
3.2. Spinal load

Fig. 8 shows the peak spinal load at all the levels during the
trial. The injury force tolerance threshold for canine cervical spine
has not been defined. Therefore, we will only comment on the
spine loading pattern in a relative fashion. Compression forces
gradually increased from C1/C2 to C4/C5 where they were the
greatest then these forces gradually decreased toward C7/T1.
The anterior/posterior (A/P) and lateral (Lat) forces varied along
the length of the cervical spine.



Fig. 7. Canine cervical spine measured external moments (solid lines) as a function
of time during a typical exertion and the moments predicted from the EMG-assisted
model for the calibration trial (dashed lines). (a) C1C2 level. (b) C7T1 level.
blue = sagittal plane, green = axial plane, red = lateral plane. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 8. Maximum spinal loads (N) measured during the trial at each cervical spine
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4. Discussion

For the first time, we have been able to develop a dog-specific
cervical spine biomechanical model that helps us understand the
pattern of 3D moments and forces imposed upon the vertebral tis-
sues of the spine during a complex dynamic exertion made by a
live animal.

The compression spine loads indicated a reasonable and
expected pattern of loading, where the highest compression values
occurred at the C4/C5 level, similar to that reported by Yoganandan
et al. (2001) in the human cervical spine. It is not advisable to val-
idate model fidelity by quantifying spinal loads magnitude, since
there is no experimental data on canine cervical spine failure
threshold to our knowledge. Moreover, due to the significant dif-
ferences between human and canine cervical spine ranging from
tissue material properties to postural variation and type of physical
activities they are exposed to, it is not reasonable to compare them.
A similar argument can be made for the muscle forces and
moments. One might consider the magnitude of internal moments
and spinal loads observed during the trial (Fig. 8) to be very large.
However, when considering the fact that the dog was pulling force-
fully against a strong latex resistance band, these spine loading
magnitudes are not out of the range of possibilities in the exertions
may be close to a maximum exertion for the animal.

The current EMG-driven dynamic model is unique in that it was
dog specific in terms of: (1) muscle morphometric properties such
as CSA, (2) muscle line of action, (3) muscle activities, and (4) sub-
ject kinematics. The model structure is multi-dimensional and is
capable of considering dynamic responses of the subject.

This model is advanced in many aspects which two of them are
outstanding. First, this is a multi-segmental cervical spine model in
which motion segments between the skull and T1 are separated
and are allowed to move relative to each other. The advantage of
the multi-segmental cervical spine can be emphasized at the
atlanto-occipital and atlanto-axial joints. According to Dugailly
et al.,(2011), 40% of axial rotation occurs at the atlanto-axial joint,
with the rest being distributed along the rest of the neck. This
allowed us to define angular displacement for each joint based
on the data recorded by the motion capture system. As a result,
the error introduced into the model by implementing the calcu-
lated joint angles from the recorded data of motion capture system
was less than 0.5 mm. Therefore, the model motion was very sim-
ilar to the actual dog motion. It is believed that while the joint
kinematics are precisely defined in the model, muscle moment
level (comp = compression, AP = anterior-posterior shear, Lat = lateral shear).
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arm and consequently measured internal moment at each time
point during the trial will be estimated more accurately.

Second, themuscle lines of actionwere determined in a cadaver-
based experiment with a precise technique. The advantages of this
technique in comparison to the previously established cadaver
experiments were: (1) muscle measurements such as cross-
sectional area were achieved without disturbing muscle attach-
ments, (2) muscle CSA could be measured at any level, and (3) esti-
mated muscle lines of action were represented realistically since
they were fitted to themuscle centroid curve created by connecting
muscle centroids in variousplanes, corrected formusclefibers angle.

As with any assessment tool one must appreciate the limita-
tions of the model. First, it should be noted that this model was
developed based on data from a single animal subject. Therefore,
the estimated muscle properties including initial muscle length,
CSA, and muscle line of action are unique to this animal and are
not necessarily representative of all canines. Another limitation
associated with the performance of the model is that at the begin-
ning of the trial a strong correlation between the predicted and
measured moments were not observed. However, one must con-
sider that during the first quarter of the trial, the dog was not pull-
ing against the latex band due to the flexed posture of the neck.
Thus, measured external moments for this portion of the task were
negligible, while internal moments were registered from the mus-
cles. This discrepancy may be due to limitations in the way inertial
characteristics were estimated for the head and vertebrae. Better
approximations for these unknown variables will need to be deter-
mined in the future. In addition, there were several parameters in
the model that had been taken from a well-established human
spine model. Further investigation is necessary to determine more
representative parameters for canines.

5. Conclusions

We believe the presented model is an important achievement in
terms of application of engineering principals to veterinary medi-
cine and a significant step forward to understand canine cervical
spine biomechanics. The model met the objectives well by being
able to track the motion precisely, accurately predict internal
moments of cervical spine based on the measured external
moments, and estimate spinal tissue loads that are reasonable based
on the task that was performed. Such an advanced canine specific
model could be eventually used routinely by veterinary orthopedic
and rehabilitation centers to evaluate treatment strategies and sur-
gical techniques before applying them on the canine patient.
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