
Objective: The objective of this mini-review is to exam-
ine a subset of literature that demonstrates multiple inter-
actions between mechanics and biology within the spine 
and propose how incorporation of these mechano-biologic 
interactions can be applied to improve the conceptual under-
standing of tissue tolerances.

Background: Low back pain represents a major mus-
culoskeletal problem in the workplace. Traditional biome-
chanical assessments have employed tissue tolerances as 
an approach for reducing workplace injuries; however, 
development of more universal biologically sensitive toler-
ances requires incorporation of mechano-biologic interac-
tions.

Methods: A focused literature review addressing the 
interactions between mechanical loading and biology in 
the spine.

Results: Mechanical loads applied to the body are distrib-
uted across all spatial scales from the body to the tissues to 
the cells. These mechanical loads regulate cellular metabolism 
and over time can lead to tissue strengthening or weaken-
ing. Mechanical loading also interacts with the biologic envi-
ronment (e.g., tissue inflammation, nerve sensitization) to 
influence the perception of pain, thereby changing the risk of 
experiencing pain. Biologic tissues also exhibit time-dependent 
changes in mechanical behaviors that occur throughout the 
day and with disease, suggesting tissue tolerances are time 
dependent.

Conclusion: Incorporating mechano-biologic interac-
tions into the traditional tissue tolerance paradigm through 
describing tissue tolerances as a function of multiple factors 
(e.g., preexisting risk factors, underlying pathology, and time) 
may lead to the development of tissue tolerances that are 
more representative of the in vivo situation.

Application: Efforts must work toward incorporat-
ing biological concepts into tissue tolerances in order to 
improve risk assessment tools.

Keywords: spine, low back, tissue loading, physiology, 
biomechanical models–spine, job risk assessment

Introduction
Chronic low back pain (LBP) is the leading 

cause of disability worldwide, with immense 
socioeconomic costs (>$100 billion in the United 
States alone) (Katz, 2006; Vos et al., 2012). In 
particular, disorders of the intervertebral disc 
(IVD) are commonly thought to contribute to 
the development of low back pain (Freemont, 
2009; Freemont et al., 1997) and are the target 
tissue for a large proportion of clinical treat-
ments. A primary goal of ergonomics research 
has been to prevent or control the occurrence 
of low back pain in the workplace. A traditional 
ergonomic paradigm compares the loads the tis-
sue experiences to a reference load, or tissue tol-
erance, which is the load limit above which an 
individual is at a greater risk of injury or pain. 
Although this ergonomic paradigm is a valuable 
tool, it does not incorporate the tissue’s biologic 
response to loading, which includes changes in 
structure with disease and the tissue’s ability to 
actively respond to its mechanical environment. 
Therefore, inclusion of the tissue’s dynamic 
biologic response to mechanical loading may 
enable the development of more universal tissue 
tolerances in living people. The objective of this 
mini-review is to highlight a subset of the lit-
erature that demonstrates different interactions 
between mechanics and biology and suggest 
how incorporation of these interactions can be 
applied to improve the conceptual understand-
ing of tissue tolerances and to prevent injury.

The Premise
The spine functions through an intricate com-

bination of biomechanical and biologic factors 
that interact in different spatial and temporal 
scales. A key concept underlying the interac-
tion between mechanics and biology is that the 
cells within the tissue respond to a mechanical 
input and that this cellular output can modify 
the mechanical response of the tissue. When 
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mechanical forces are applied to the body, the 
forces are distributed across all spatial scales, 
that is, from the whole body, to the spine, to 
the individual tissues, and eventually down to 
the cells (Figure 1). Inherent in this multiscale 
concept is that biologic tissues are composed 
of two primary components: the extracellular 
matrix, which is all of the noncellular compo-
nents of the tissues, and the cells embedded 
within the extracellular matrix. The composition, 
physical properties, and alignment/orientation 
of the noncellular components within extracel-
lular matrix are what give the tissue most of its 
mechanical integrity. As such, any changes to 
the extracellular matrix, which may result from 
genetic variation, disease, mechanical damage, 
or tissue synthesis/degradation, will have a direct 
effect on the ability of the tissue to bear load and 
thereby influence its mechanical tolerance.

Current tissue tolerance limits within the lum-
bar spine have been based primarily on the onset 
of mechanically induced tissue damage (Marras, 
2012). Historically, the tissue tolerance for com-
pressive forces within the lumbar spine (forces 
acting down the long axis of the spine) have been 
based on the onset of endplate microfracture 
(Chaffin, Andersson, & Martin, 2006). However, 
recent work has also started to incorporate other 
types of loading, such as shear loading (forces 
acting perpendicular to the compressive forces), 

and also to incorporate the interaction between 
the number of repetitions of applied loading and 
the loading magnitude (Gallagher & Marras, 
2012). All of these parameters are important, 
especially in work-related scenarios that include 
repetitive tasks. We propose that in addition to 
the factors listed previously, incorporation of 
changes that occur to the extracellular matrix 
with degeneration and in response to biologic 
factors will allow the development of potentially 
more universal tolerance limits. This mini-review 
highlights the interactions between biomechani-
cal loading and intervertebral disc biology and 
focuses on how an improved understanding of 
this complex interplay might provide insights 
into the development of new tolerance limits in 
the future.

Multifactorial Etiology  
of Low Back Pain

Epidemiological studies have demonstrated 
that many factors contribute to the risk of 
developing low back pain (Battie, Videman, 
Levalahti, Gill, & Kaprio, 2007; Linton, 2000; 
Norman et al., 1998; Steffens et al., 2015). The 
plethora of risk factors can be grouped into 
three broad classifications: biological/individ-
ual (e.g., genetics, gender, age, anthropometry, 
alcohol/smoking, back pain history), physical 

Figure 1. Multiscale spinal mechanics. Mechanical forces are distributed across all spatial 
scales, that is, from the whole body to the spine to the individual tissues and eventually 
down to the cells. (A) Loads that are applied to the whole body are distributed to the (B) 
spinal motion segments and then transferred to (C) the individual spinal tissues and down 
to (D) the extracellular matrix and sensed by the embedded cells.
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(e.g., heavy physical work, static sedentary 
work, lifting/forceful movements, whole body 
vibration, awkward postures), and psychosocial 
(e.g., high demand jobs, high perceived stress, 
job dissatisfaction) (Battie et al., 2007; Linton, 
2000; Norman et al., 1998; Steffens et al., 2015). 
Despite the identification of multiple important 
epidemiological factors, uncertainty remains in 
our understanding of the causal factors of low 
back pain as many of these factors can vary based 
on the degree, or dosage, of exposure. Many of 
these risk factors also likely interact at various 
levels of intensity, and this interaction influences 
overall risk. For example, the relevance of a 
genetic defect affecting extracellular matrix integ-
rity may increase as that individual is exposed to 
higher physical loads. These interactions are not 
adequately chronicled by epidemiological studies, 
and so only a partial view of the complex problem 
is provided (Marras, 2008).

Mechanical Loading Influences 
Matrix Composition

The spine experiences millions of loading 
cycles over decades of life. These loading cycles 
play an important role in regulating the mechan-
ical integrity of the tissue, similar to how you 
can build or lose muscle through exercise or a 
sedentary life style. The cells within the tissue 
perceive and respond to mechanical loading 
by changing their metabolic balance between 
matrix synthesis (tissue build-up/production) 
and matrix breakdown (Figure 2). Mechani-
cal loading is well recognized to regulate the 
structure and function of musculoskeletal tis-
sues ranging from bone, muscle, cartilage, and 
the IVD (Bader, Salter, & Chowdhury, 2011; 
Killian, Cavinatto, Galatz, & Thomopoulos, 
2012; Neidlinger-Wilke et al., 2014; Sugiyama, 
Price, & Lanyon, 2010). When mechanical 
loading is applied to a tissue, the mechani-
cal response of the tissue is dependent on the 
amount of tissue (cross-sectional area) that the 
force is acting on, similar to how a thin piece of 
rope may break under a given tensile load and 
a thick piece of rope would not break under the 
same load. Therefore, when mechanical loading 
is applied to tissues, it is generally described as a 
pressure, or mechanical stress, and is expressed 
in units of force (N) per cross-sectional (m2) 

area or Pascal (Pa). Specifically in the healthy 
IVD, dynamic loading within a “physiologic” 
range of pressures and frequencies (0.2–1 MPa 
at 0.1–1.5Hz) is largely beneficial and shifts 
the metabolic balance to favor matrix synthe-
sis while reducing matrix breakdown (Chan, 
Ferguson, & Gantenbein-Ritter, 2011; Korecki, 
MacLean, & Iatridis, 2008; MacLean et al., 
2003; MacLean, Lee, Alini, & Iatridis, 2004, 
2005). However, if external loading is either 
above or below this physiologic range, the cel-
lular response is no longer beneficial and shifts 
toward favoring matrix breakdown (Chan et al., 
2011; Paul et al., 2013; Stokes & Iatridis, 2004).

Adaptation of the extracellular matrix to 
mechanical loading occurs over a long temporal 
scale and suggests that tissue integrity, or tissue 
quality, is dynamic and can be strengthened and 
weakened over time. This dynamic tissue qual-
ity likely contributes to the high variability in 
tissue tolerances previously described (com-
pression: 3 kN–8 kN) (Marras, 2012) and may 
also help explain the variability in the relative 
risk of experiencing low back pain at a given 
physical work load exposure. For example, a 
weakened tissue may have an elevated risk of 
injury while a strengthened tissue may have  
a reduced risk of injury compared to a normal 
tissue.

Biomechanics, Biology, and Pain
Another example of how biomechanics and 

biology interact is in pain perception. It is well 
established that pain originates from pain sens-
ing nerves (i.e., nociceptors). However, induc-
tion of pain can arise from multiple sources. 
A common source of low back pain involves 
impingement of the spinal cord or a nerve root 
following an IVD injury or herniation. Although 
these types of injuries are prevalent among 
clinical populations, pain can also arise from 
degeneration of other spinal tissues such as liga-
ments, facets, or the IVD.

The healthy IVD is the largest organ in the 
body that does not have a direct peripheral nerve 
or blood supply; however, with disease progres-
sion, nerves and blood vessels have been demon-
strated to grow into painful discs through the end-
plate and outer region of the IVD into the inner 
regions (Fields, Liebenberg, & Lotz, 2014; 
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Freemont et al., 2002). There is a limited under-
standing of the mechanisms driving this aberrant 
nerve growth into the IVD; however, changes in 
the mechanical integrity and biochemical environ-
ment of the IVD tissue have been suggested as 
potential mechanisms promoting nerve growth 
(Stefanakis et al., 2012; Stefanakis, Luo, Pollin-
tine, Dolan, & Adams, 2014). Matrix breakdown 
that occurs following injury or with aging and 
degeneration can lead to a loss of proteoglycans, a 
key component of the extracellular matrix within 
the IVD. Proteoglycans play an important role in 
preventing nerve and blood vessel growth (angio-
genesis) through (a) directly inhibiting nerve 

growth (Johnson, Caterson, Eisenstein, & Rob-
erts, 2005; Johnson et al., 2002; Purmessur et al., 
2015) and (b) inducing a hydrostatic swelling 
pressure within the IVD that physically prevents 
nerve growth. Therefore, a loss of proteoglycans 
leads to a loss of the direct inhibition as well as 
reductions in the intradiscal pressurization, 
thereby creating an environment that is both 
mechanically and biochemically conducive for 
nerve and blood vessel growth (Stefanakis et al., 
2012). A second contributing factor is the presence 
of biochemical signals that promote/direct neuro-
nal growth and angiogenesis, such as pro-inflam-
matory signals and growth factors (Abe et al., 

Figure 2. Mechanical loading influences matrix composition and injury risk. The biologic 
response of a tissue is always a balance between tissue build-up and breakdown. (A) 
The mechanical integrity of the tissue is maintained when there is equal amounts of 
tissue build-up and breakdown. (B) The tissue is weakened when tissue breakdown is 
greater than the tissue build-up, and (C) the tissue is strengthened when tissue build-up 
is greater than breakdown. (D) The conceptual relationship between loading and cellular 
metabolism demonstrating that the metabolic balance is influenced by the type of loading 
the tissues experience, which can change the balance between matrix breakdown and 
matrix build-up/synthesis. (E) The risk of injury (R) at a given physical work intensity 
is influenced by the accumulation of matrix turnover and can be reduced in strengthened 
tissues (Rstrong) or increased in weakened tissues (Rweak).
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2007; Purmessur, Freemont, & Hoyland, 2008; 
Shafiq, Jung, & Kim, 2015). These factors can be 
expressed by IVD cells and by the surrounding 
blood vessels, which can penetrate the IVD once 
structural disruption has occurred, and direct nerve 
growth.

Although the presence of nerves is necessary 
for the sensation of pain, some form of nerve stim-
ulation is also required for a pain response to be 
induced. Mechanical forces acting on nociceptors 
can induce pain; however, it is also known that 
biochemical stimulation of nociceptors (i.e., 

inflammatory proteins such as pro-inflammatory 
cytokines) can also induce a pain response  
(Garcia-Cosamalon et al., 2010; Schaible, 2014). 
In vivo, these biochemical and mechanical factors 
likely interact to influence pain perception. It is 
understood that an individual’s pain threshold 
may be different than the tissue tolerance limit, 
especially in poorly innervated tissues such as the 
IVD. In such tissues, changes in the biochemical 
environment (i.e., tissue inflammation) may pro-
vide two potential mechanisms for elevated sensi-
tivity to pain. The first mechanism of elevated 
sensitivity is that the mere presence of certain bio-
chemical factors, such as pro-inflammatory cyto-
kines, can “sensitize” local nociceptors, meaning 
that the neuronal activation threshold is lowered 
so that typically innocuous stimuli can induce a 
pain response (Izzo, Popolizio, D’Aprile, & Muto, 
2015; Schaible, 2014). Thus, typically nonpainful 
loading may induce a pain response in nerves that 
have been sensitized (Figure 3). The second con-
sequence of inflamed tissue is that local swelling 
may occur that increases the hydrostatic pressure 
on nerves, potentially causing pain or at least 
reducing the amount of additional external loads 
required to elicit a pain response.

Mechanical loading itself can also contribute 
to the presence of pro-inflammatory mediators 
within the IVD, through (a) facilitating the trans-
port of pro-inflammatory cytokines into the  
IVD from the surrounding tissues (Walter et al., 
2015) and (b) inducing the expression of pro-
inflammatory cytokines by the native IVD cells 
(Gawri et al., 2014; Walter et al., 2011). The pres-
ence of multiple pro-inflammatory cytokines is 
associated with matrix breakdown seen in IVD 
degeneration and is positively correlated with aging 
and severity of degeneration (Bachmeier et al., 
2007; Le Maitre, Hoyland, & Freemont, 2007; 
Risbud & Shapiro, 2014; Weiler, Nerlich, Bach-
meier, & Boos, 2005). Cell culture experiments 
have demonstrated that these pro-inflammatory 
cytokines induce a metabolic shift favoring 
matrix breakdown (Hoyland, Le Maitre, & 
Freemont, 2008; Le Maitre et al., 2007; Purmes-
sur et al., 2013; Seguin, Bojarski, Pilliar, Rough-
ley, & Kandel, 2006; Seguin, Pilliar, Roughley, 
& Kandel, 2005), and organ culture experiments 
have confirmed that a prolonged exposure to 
inflammatory mediators can directly alter the 

Figure 3. Conceptual relationship between pain 
sensitivity, inflammation, and load tolerance following 
tissue injury. (A) Initially, there is minimal tissue 
inflammation, and the tissue tolerance, the load limit 
above which an individual is at a greater risk of 
injury, is below the pain threshold due to the limited 
innervation within the intervertebral disc (IVD). (B) 
Tissue injury occurs, and there is an instantaneous 
decrease in the tissue tolerance. (C) There is an 
increase in tissue inflammation following tissue 
injury. (D) The presence of inflammation induces 
matrix breakdown, further decreasing tolerance, 
and sensitizes the nerves, resulting in a drop in the 
pain threshold. (E) As a result of the drop in the pain 
threshold, normal loading that is not damaging and 
is below the tissue tolerance can still induce pain. 
(F) Gradual resolution of inflammation and tissue 
healing/strengthening occurs.
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mechanical behavior of the IVD (Walter et al., 
2015). Overall, these studies highlight that the 
mechanical and biochemical environments can 
mediate nerve growth and influence nerve stimu-
lation and that these events likely coincide with 
changes in the local loading environment within 
the IVD following matrix breakdown.

Time-Dependent Mechanical 
Behaviors

Biological tissues are viscoelastic and exhibit 
time-dependent changes in mechanical behav-
ior. The tolerance of a tissue is dependent on its 
mechanical properties; however, the mechani-
cal properties of a tissue can change with time 
and suggest that the tolerance of that tissue 
may also be time dependent. In the spine, this 
time-dependent mechanical behavior is most 
prominently observed in the IVD and is a result 
of changes in tissue hydration that occur over 
time (Adams, Dolan, & Hutton, 1987; Urban 
& McMullin, 1988). The IVD’s water content 
can vary by up to 20% throughout the day 
(Botsford, Esses, & Ogilvie-Harris, 1994) and 
also progressively decreases as degeneration 
progresses. This results in the IVD experienc-
ing changes in mechanical behaviors on two 
time scales: one that occurs on a daily basis as 
the IVD compresses, or creeps, throughout the 
day and a second that occurs over decades as 
the extracellular matrix is degraded and broken 
down during aging and degeneration (Figure 4).

The IVD experiences an 8% to 10% height 
loss throughout the day with a total change in the 
length of the spine of ~19 mm between the morn-
ing and the evening (Tyrrell, Reilly, & Troup, 
1985; Walter, Illien-Junger, Nasser, Hecht, & Iat-
ridis, 2014). This daily disc height loss increases 
the compressive stiffness of the IVD and reduces 
intradiscal pressures as water is lost, leading to a 
redistribution of the spinal loads primarily on the 
IVD in the morning to other spinal structures in 
the evening (Adams, Dolan, Hutton, & Porter, 
1990; Zander, Krishnakanth, Bergmann, & Rohl-
mann, 2010) (Figure 4A). This loss of disc height 
also results in an overall increase in spinal flexi-
bility and range of motion and can be thought of 
as a decrease in the spine’s resistance to bending. 
This decreased resistance to bending is evident in 
that the flexion angle of the spine increases under 

the same bending moment, which is a measure of 
the tendency of a structure to bend from an 
applied force (Adams & Dolan, 1996; Jamison & 
Marcolongo, 2014; Zander et al., 2010) (Figure 
4B). These diurnal changes in IVD mechanics 
are thought to be clinically significant and may 
contribute to the elevated odds ratios for the 
onset of acute low back pain in the morning, 
when compressive loading induces greater pres-
surization within the IVD, versus the afternoon 
(Adams et al., 1990; Steffens et al., 2015).

The composition of the extracellular matrix 
within the IVD changes throughout the degenera-
tion process and is progressively broken down 
with advancing degeneration (Adams & Rough-
ley, 2006; Sivan, Wachtel, & Roughley, 2014) 
(Figure 4C). These structural changes to the IVD 
influence the mechanical behavior of the spine in 
a manner that is dependent on the degree of IVD 
degeneration (Yong-Hing & Kirkaldy-Willis, 
1983). For example, in early stages of degenera-
tion, the matrix breakdown mainly occurs within 
the centrally located nucleus pulposus region of 
the IVD, which reduces the swelling pressure and 
gradually shifts the applied loads onto the outer 
region of the IVD with advancing degeneration 
(Adams & Roughley, 2006). As a consequence, 
there is a gradual increase in the range of motion 
(i.e., hypermobility) of the spine that occurs dur-
ing early and moderate stages of degeneration. 
However, in advanced degeneration, once exces-
sive amounts of matrix have broken down, the 
flexibility of spine decreases (Iatridis, Nicoll, 
Michalek, Walter, & Gupta, 2013; Yong-Hing & 
Kirkaldy-Willis, 1983). Another mechanical con-
sequence of tissue breakdown and resultant reduc-
tions in swelling pressure is that degenerated IVDs 
have an accelerated height loss under loading 
(Emanuel et al., 2015) (Figure 4D). Together, 
these studies highlight the time-dependent 
mechanical behavior of the IVD tissue and sug-
gest that the tissue tolerance threshold may be 
influenced by both the duration of loading and the 
degree of degeneration.

Interactions Between Mechanics 
and Biology Inform Prevention
One of the objectives of ergonomics is to 

improve the well-being of individuals via the 
prevention of work-related low back pain. The 
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previous sections emphasize the complex rela-
tionship between mechanical and biological 
factors and highlight that understanding the 
interplay between tissue mechanics and biol-
ogy is key for developing better strategies for 
preventing low back pain. The development 
of pain is influenced by both mechanical and 
biologic factors and suggests that the presence 
of certain “preexisting” biologic factors (e.g., 
tissue inflammation, preexisting pathology, or 
genetic alterations that influence matrix integ-
rity) may weaken or sensitize the tissue and can 

influence the risk of experiencing low back pain 
at a given physical work intensity compared to 
an unaffected person (Figure 5). This suggests 
that preventive strategies should address, or at 
least account for, both mechanical and biologic 
factors. One way to do this is through acknowl-
edging that tissue’s tolerance is dynamic and is 
a function of multiple factors such as duration of 
loading, degree of degeneration, inflammatory 
environment, and metabolic balance. In practice 
it is difficult, if not impossible, to know the cur-
rent degree of inflammation or the metabolic 

Figure 4. Time-dependent mechanical behavior of the intervertebral disc (IVD). The 
spine experiences time-dependent changes in mechanical behavior that occur on two 
time scales: daily and over decades. (A) Schematic demonstrating the diurnal change 
in IVD height and the resultant change in ligament laxity, facet contact forces (F), and 
nucleus pulposus (NP) pressurization (P) in the morning (AM) and the evening (PM). (B) 
Schematic demonstrating the diurnal change in height influences the mechanical behavior 
of the spine, which is evident by an increased degree of motion segment flexibility. (C) 
Sagittal magnetic resonance imaging of human lumbar IVDs demonstrating the changes 
in structure that occur within the annulus fibrosus (AF) and NP regions of the IVD during 
degeneration. Images modified from Smith, Nerurkar, Choi, Harfe, and Elliott (2011). 
(D) Examples of the differences in diurnal height loss (24-hour cycle) in human lumbar 
IVDs of mild and severe degeneration cultured under the same loading conditions (16 
hours: 370 ± 130 kPa, 8 hours: 73 ± 10 kPa) in organ culture. Figure modified from 
Emanuel et al. (2015) with permission.
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balance at any point in time. Therefore, the use 
of a broad measurement of “tissue quality” such 
as the grade of IVD degeneration, which is a 
measure of the accumulation of matrix changes, 
may be more applicable (Figure 6).

Another way to incorporate mechano-biologic 
interactions into a preventive strategy to reduce 
workplace injuries may be to develop workplace 
routines that maintain loading within a “physio-
logic range” that promotes tissue strengthening or 
maintenance. This would require future research 
to identify the range of loading parameters (e.g., 
magnitude, frequency, and duration) that pro-
motes matrix strengthening in the many differ-
ent spinal tissues. In addition, this approach 
would require the use of personalized mathe-
matical models that allow the calculation of the 
loads that the various tissues experience in dif-
ferent percentiles of the general population. 
Another potential application would be develop-
ing work routines or schedules that account for 
the time-dependent changes in spinal mechan-
ics; for example, the incorporation of resting 

periods in between tasks that would allow time 
for recovery or alternating between high and low 
force exposures at different times of the day 
when the loads are borne by various spinal  
tissues.

Conclusion
In order to develop more universal tissue tol-

erances and understand their relationship to low 
back pain, it is important to recognize that both 
mechanical and biological factors influence the 
risk of experiencing low back pain. We propose 
that these mechano-biologic interactions are 
particularly relevant to both the perception of 
pain and the understanding that a tissue’s toler-
ance is dynamic and a function of multiple fac-
tors, including underlying pathology and time. 
Overall, the appreciation that the body is a sys-
tem with many interacting factors may provide 
a more useful paradigm in the development of 
universal tolerance limits that approach the in 
vivo situation.

Figure 5. Preexisting biologic factors influence risk. A preexisting biologic 
risk factor, such as tissue damage, inflammation, or genetic mutation, could 
weaken or sensitize the tissue. Loading applied to this weakened or sensitized 
tissue would be at a greater risk (RBF-Norm) of experiencing low back pain 
(LBP) compared to an unaffected individual (RNorm) at the same physical work 
intensity.
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Key Points
•• Interactions between mechanical loading and biol-

ogy can influence the perception of pain and regu-
lates tissue strengthening and weakening.

•• A tissue’s tolerance is dynamic and is a function 
of multiple factors, including underlying pathol-
ogy and time.

•• Both mechanical and biological factors influence 
the risk of experiencing low back pain, and as 
such, both factors should be incorporated into pre-
ventative strategies.
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