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Estimation of the Dynamic Spinal Forces Using
a Recurrent Fuzzy Neural Network
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Abstract—Estimation of the dynamic spinal forces from Kine-
matics data is very complicated because it involves the handling
of the relationship between kinematic variables and electromyo-
graphy (EMG) signals, as well as the relationship between EMG
signals and the forces. A recurrent fuzzy neural network (RFNN)
model is proposed to establish the kinematics—-EMG—force rela-
tionship and model the dynamics of muscular activities. The EMG
signals are used as an intermediate output and are fed back to
the input layer. Since EMG is a direct reflection of muscular
activities, the feedback of this model has a physical meaning. It
expresses the dynamics of muscular activities in a straightforward
way and takes advantage from the recurrent property. The trained
model can then have the forces predicted directly from kinematic
variables while bypassing the costly procedure of measuring EMG
signals and avoiding the use of a biomechanics model. A learning
algorithm is derived for the RFNN model.

Index Terms—Fuzzy neural networks, spinal force.

I. INTRODUCTION

HE MUSCULAR activities in manual materials-handling

tasks are complex and dynamic. The loads on the lumbar
spine during manual lifting are very useful in judging if such a
task is risky. Studying the forces applied to the lumbar spine
is fundamental to the understanding of low back injury [1].
Biomechanical models are often used to obtain the forces ap-
plied to the lumbar spine from the measured electromyographic
responses of trunk muscles during lifting motions, as shown
in Fig. 1(a). Electromyography (EMG) signals are measured
because they directly reflect muscular activities [2]. However,
the measuring of EMG signals and the use of biomechanical
models are costly and time consuming.

Fuzzy systems and neural network models have been used to
replace the biomechanical model in Fig. 1(a). In [3], Wang and
Buchanan predicted the muscular activations from EMG signals
using a four-layer feedforward neural network model trained by
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Fig. 1. Load (forces on spine) prediction systems. (a) Conventional EMG-
driven load prediction system. (b) RFNN-based direct load prediction system.

a backpropagation learning algorithm. Luh et al. built a neural
network to model the relationship between EMG activity and
elbow joint torque [4]. Liu er al. used a neural network to
predict dynamic muscle forces from EMG signals [5]. In [6]
and [7], neurofuzzy models were developed for EMG signal
classification and prosthesis control. These findings focus on
building the relationship between the EMG signals of the
muscles and the forces on the joint. They all require the EMG
signals to be measured, which is often difficult to perform in
industrial environments.

EMG signals are also related to kinematic characteristics in
motion. The kinematic variables (with other auxiliary variables)
can be used to estimate the EMG signals generated in the
muscles during motion [8], [9]. Thus, we may be able to
connect the spinal forces with kinematic variables through
EMG signals. We want to develop a model that can express the
kinematics—EMG-force relationship and predict forces on the
lumbar spine without the procedure of measuring EMG signals
and the use of a biomechanics model. Since the information ob-
tained for the evaluation of body stresses is normally uncertain,
imprecise, and noisy, and the input—output relationship between
the multiple variables is not clear in many situations, neural
networks and fuzzy logic methods are used here. By using
the fuzzy neural approach, we can avoid establishing a com-
plex mathematical model to express the muscle activation dy-
namics. The adaptive fuzzy neural inference system [10]—[12]
is a hybrid method that combines the advantages of the neural
network and fuzzy logic approach. When feedback connec-
tions are added, it becomes a recurrent fuzzy neural network
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(RFNN). The feedback makes it possible to take past infor-
mation into account. The output of the model is computed
by the current data as well as the preceding data. The time
delay is incorporated in the feedback connections. It serves
to preserve the past information, so that the RFNN is able to
handle the dynamics. It expands the basic ability of the fuzzy
neural network to include temporal problems [13]. To establish
the kinematics—-EMG—force relationship and estimate the dy-
namic forces on the lumbar spine, we build an RFNN model.
By providing EMG feedback to the model, a straightforward
way to express the kinematics—-EMG—force relationship can be
obtained. The relationship between the feedback and the output
coincides with the physical EMG-force relationship.

A. Related Work

There are several ways to provide feedback connections. In
[14] and [15], the output of each membership function is fed
back to itself to achieve the recurrent property. However, the
fuzzy rules obtained from the model cannot give us a clear
understanding of the system. In the premise of the rules, the
inputs are combined with the feedback of the outputs of their
own membership functions, i.e.,

IF the external variables (at t) are A; and the outputs of
membership functions (at ¢) are B, THEN the outputs (at ¢ + 1)
are C) and the outputs of membership functions (at ¢+ 1)
are D;.

A;, Bj, Cy, and D; are fuzzy sets in the above rule.

The rules become difficult to understand and are not so
meaningful to us in explaining the behavior of the system. The
only function of the feedback is to add a memory element to
the model.

In [16] and [17], the output of all rule nodes, the firing
strength, is fed back. It serves as an internal variable. The rules
generated by the model have the following form:

IF the external variables (at t) are A; and the firing strengths
(at t) are B, THEN the outputs (at ¢ + 1) are C}; and the firing
strengths (at ¢ + 1) are D).

Although the internal variables play a role in the fuzzy rules
and contribute to the model, it is not useful to us in under-
standing the system under consideration. The firing strength
(the internal variable) is not what we care about. What we want
to know is the relationship between the input and output of the
system.

In [18] and [19], the final output of the network is fed back
to the input layer. In [18], the feedback is multiplied with the
external inputs of the model. Thus, the inputs of the first layer
become

net = Haz} CWei -yt — 1) (1)

o

where x} is the external input, w,; are the weights of the

feedback connections, y*(t — 1) is the output of the model at
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t — 1, and o is the number of outputs. The rules obtained from
the model are as follows:

IF the products of external variables and the feedback (at t)
are A;, THEN the outputs (at ¢t + 1) are C;, and the feedback
(att + 1) are D;.

As we can see, the rules also lose their clear physical
meaning.

In [19], the feedback of the outputs is not combined with
other signals. They are fed to the input layer as regular input
variables. However, the membership functions used for the
feedback connections are of the following form:

p=exp (= (w gt —1)°) )

where w denotes the weights of the feedback connections.
Formula (2) is in fact a Gaussian membership function centered
at zero with one adjustable parameter of width. The advantages
of doing so are that the network has less parameter and the
update rules for the tuning parameters are easier to calculate.
However, setting all the feedback membership functions’ cen-
ters as a fixed value of zero may decrease the effectiveness of
the feedback variables.

In our model, we use the EMG signals as an intermediate
output and feed them back to the input layer to obtain the
kinematics—EMG—force relationship [Fig. 1(b)]. By doing that,
the feedback of the intermediate output has a physical mean-
ing (the direct relationship of EMG-force). This reflects the
dynamics of the system in a clear and straightforward way.
At the same time, the advantages of recurrent property are
utilized. The rules generated from the model can be easily
interpreted and can help us understand the muscular activities
better. Measured EMG signals are only required at the training
stage. After training, EMG signals will be the feedback from
output of the model.

II. MODEL CONSTRUCTION

We come up with an RFNN model that takes the kinematics
data and EMG data at time ¢ and estimates the spinal forces
and EMG signals at time ¢ + 1. The EMG signals of six trunk
muscles are scaled and delayed before they are fed back to the
input layer. The time delay (from time ¢ to time ¢ + 1) is about
1 ms. It is decided by the time difference between two sampling
data points. The previous data point of EMGs is fed back
because the forces are directly affected by them. Earlier EMGs
could also be added to the feedback, but it will make the model
too complex and rules difficult to interpret. The delay of EMG
is used to represent the muscular activation dynamic properties.
The interaction between muscles influences the EMG and the
forces on the spine. By presenting the previous EMG to the
input, we hope the model can take such interaction into account.
The structure of the proposed model is shown in Fig. 2.

As we can see in Fig. 2, the direct physical relationships
(kinematics—-EMG and EMG—force) reside in the model. Three
forces on the lumbar spine and six EMG signals of trunk
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Fig. 2. Proposed RFNN structure. Z~! is a unit delay operator, and S is a
scale operator.

muscles are the model outputs. Twelve kinematic variables and
six EMG feedback signals are the model inputs.

The kinematic variables includes the sagittal trunk moment,
lateral trunk moment, axis trunk moment, sagittal trunk angle,
lateral trunk angle, axis trunk angle, sagittal trunk velocity, la-
teral trunk velocity, axis trunk velocity, sagittal trunk accelera-
tion, lateral trunk acceleration, and axis trunk acceleration.

The six trunk muscles are the right latissimus dorsi (RLD),
left latissimus dorsi (LLD), right erector spine (RES), left
erector spine (LES), right internal oblique (RIO), and left
internal oblique (LIO). The EMG signals of these muscles are
normalized EMG magnitude. They range from zero to one. To
make them have the same range as the external input variables
(kinematic variables), they are scaled before being fed back to
the input layer.

The three spinal forces are the lateral shear force,
anterior—posterior (A—P) shear force, and spinal compression.
They are not the forces measured from the experiments since
they cannot be measured directly. They are in fact the forces
obtained from the biomechanics model. After the direct predic-
tion model is built, the biomechanics model will no longer be
needed in the future.

The function of each layer in Fig. 2 is described as follows.

Layer 1 is the input layer. It includes two parts. One is the
kinematic variables, and the other one is the feedback of EMG
signals. They are passed to the second layer.

For external inputs

y M =1, 3)

i=1,2,..
variables.
For the internal (feedback) inputs

., Ny, where N; stands for the 12 kinematic

g =y (- 1) )

y,(:l)(t — 1) is the kth output of layer 4 at time (¢ — 1), which
denotes the EMG feedback. i = N; + 1, Ny +2,..., N, and
N = Ni + Ny, where N, stands for the number of EMG
feedback signals.

Layer 2 is the input fuzzification layer, which represents
linguistic sets in antecedent fuzzy membership functions. Each
neuron describes a membership function and encodes the center
and width of membership functions. The output of this layer is
the degree of membership of each input.

For external inputs, the following Gaussian membership
functions are used:

, W=y |
yy = exp —(”) 5)

O’ij

m;; and o;; are centers and widths of the membership
functions, respectively. ¢ = 1,2,..., Ny, and j = 1,2,..., M,
where M is the number of rules.

For the internal inputs, the following membership functions

are used:
(2) ) =iy ’
Yij- = €Xp | — ZAij (6)

m,; and &;; are centers and widths of the membership
functions, respectively. ¢ = N1 +1, Ny +2,...,N, and j =
1,2,..., M.

Layer 3 computes the firing strength. Nodes in this layer per-
form the product operation. The links establish the antecedent
relation with an AND operation for each fuzzy set combination
(both the external input and the feedback). The output of this
layer is the firing strength of each fuzzy rule, i.e.,

( (

3)_ 2)

Y; —l I Yij
i=1

N, yg)im” 2
:Hexp —|E=—
i=1 Tij

N

where j = 1,2,..., M.

Layer 4 is the defuzzification layer. Each node in this layer is
called an output linguistic node and corresponds to one output
linguistic variable, i.e.,

M 3
@ _ 2j=1 ijy§ ) 3
ko M (3) (®)
Zj:l Yj



HOU et al.: ESTIMATION OF THE DYNAMIC SPINAL FORCES USING AN RFNN

wy; is the weights of the connections between layers 3 and 4.
k=1,2, ..., K, where K is the number of outputs.

This is a fuzzy system model with learning capabilities. It
uses a singleton to represent the output fuzzy set of each fuzzy
rule. The product operator instead of the minimum operator
is used for the calculation of the firing strength because the
calculation of the partial derivatives is easier for the product
operator. In fact, the forces in the output could also be fed
back. However, to achieve the direct kinematics—EMG—force
relationship, we did not do that.

The rules generated by the above model are in the form of
the jthrule, i.e.,where pi;; (i = 1,2,...,N1; j =1,2,..., M)
are fuzzy sets of Kine; (the ith kinematic variable). ji;; (i =

1,2,...,N2; j=1,2,...,M) are fuzzy sets of EMG;.
Okj (k=1,2,...,K1) are the output singletons for forces.
Yi; (k=1,2,...,N2) are the output singletons for EMG
signals.

IF Kine (¢) is p1; and . .. and Kine 1) (t) is p1(n1);

and EMG (t) is fi1; and . .. and EMG ) (%) is fi(n2);

THEN Force; (t + 1) is Oy, and ... and Forceg (¢t + 1) is
Oy,

and EMG; (¢t +
Yz,

1) is Yy; and ... and EMGng)(t + 1) is

The forces predicted for time ¢+ 1 depend on not only
the inputs at time ¢ but also the predicted EMG at time ¢,
which again depend on the previous inputs. This is a dynamic
approach that can represent the dynamic properties of the forces
better than a feedforward network.

The above fuzzy rules represent the relationships between
kinematic variables, EMG signals, and forces. Since they are
related variables, the rules can be decomposed into three sub-
sets of fuzzy rules as follows:

The kinematics—EMG relationship
IF Kine; is p1; and ... and Kine(nqy is p(n1);5
EMG1 is Ylj and ... and EMG(NQ) is YV(NZ)j
The EMG-force relationship
IF EMG; is fi1; and ... and EMGyy) i8 fi(n2);, THEN
Force; is O1; and . .. and Forceg 1 is O(k1);
The kinematics—force relationship
IF Kine; is p1; and ... and Kine(y1) is p(n1)j, THEN
Force; is Oy and . .. and Force 1 is O(k1);-

THEN

These kinematics—EMG-force relationships are knowledge
we would like to find out.

A. Structure Adaptation and Parameter Tuning

During the learning process, structure adaptation and para-
meter tuning are carried out, as defined in [20]. Initial fuzzy
partition for the data is not needed since structure of the model
and parameters of the rules will be adjusted during the learning
process. Similar methods were also used in [13] and [16].
Initially, no rules exist in the model. Rules are created during
the learning process using training data pairs. Since a rule
corresponds to a cluster in the input space, the firing strength
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of a rule can be regarded as the degree the incoming pattern
belongs to the corresponding cluster. Therefore, the spatial
firing strength, i.e.,

M
2
::I]:y%)
i=1
Ny (1) 2 N 1) . \2
_H <yi —mij> H (Z/Z —m,»j>
=]1]1€XpP|— exp |— -
Py Oij Oij
i=1

i=N1+1
©))

is used as the criterion to decide if a new fuzzy rule should be
generated. If the firing strength yj( ) > (3, then the rule base is
unchanged, and the gradient training is performed to match the
new sample pair. 3 is a threshold defined as the least acceptable
degree of excitation of the existing rule base. It decays during
the learning process to limit the size of the network. If the firing
strength yf’) < (3, then a new rule is generated.

The free parameters to be initialized for the new rule include
the membership functions of the external variables, the mem-
bership functions of the internal variables, and the weights of
the consequence singleton. These parameters are all adjustable
later in the parameter learning phase to minimize an objective
function. Therefore, it is not necessary to spend much time
on the assignment of centers and widths for finding a perfect
cluster. For an input pattern (z;,y;), the parameters of a new
fuzzy rule are initialized as follows:

mi; =5

mij =a(yemc(t — 1)
044 :&ij =)

Wi =y;

—0.5)

where a is a scalar, and b is a prespecified constant.

The centers of the new fuzzy membership functions of ex-
ternal variables (m;;) are set to be x;. The centers of the new
fuzzy membership functions of internal variables (772;;) are set
to be the rescaled previous EMG output, which are fed back.
The width of all new Gaussian membership functions is kept
at a prespecified constant value to reduce the computational
load. Similar methods are employed in [12] and [21] to allocate
the membership function of a new fuzzy rule. The initial link
weight Wy, (the output singleton) is set to ;.

The free parameters in the fuzzy inference mechanism are
then tuned after new rules are created. Parameter tuning is
carried out concurrently with the structure adaptation. The
ordered derivative [22] is used to derive the learning algorithm.

The error function to be minimized is

Bt+1) =23 (dr(t+1) -

k=1

K
Zs t+1

k=1

yM (it + 1))

[\

(10)

N}M—\

where dj(t + 1) is the actual system output, and y( )(t +1)is
the output of the model (the output of layer 4).



104 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 1, FEBRUARY 2007

1) Tuning the Output Singleton: The update rule for the
output singleton wy; (the weights of the connections between
layer 3 and layer 4) is

OE(t+1)
where
OE(t+1)  OE(t+1) oy
awkj o 8y,(€4) Bwkj
y(3)
_ J
=e(t+ 1)7M Ok (12)
j=1Y;j

2) Tuning the Membership Functions of the External Vari-
ables: The centers of the membership functions of external
variables are m;;. The update rule is

OFE(t
mylt+ 1) =my() —n2G L ay
where
QE(t+1)  OE(t+1) 0y
omi; aysY  Omy;
= ig(t-ﬁ-l) -D- gryf) (14)
k=1 K
in which D is defined as follows for notation simplicity:
p_ (k) (15)
B

From (7), we get

0-my) 2 (1w -my)”

v (
R > 52

i=1 ij i=N;+1 ij
(16)
in which yi(4) (t) again depends on m;.
Then the derivative can be written as
31/]( ) (3) al oy (1)
= Ay — B.— 17
g =Y (A > o (17)
i=N1+1
where A; and B are defined as
2 (5 (t) - my
A = 5 (18)
o
2 (1) — i)
B= o (19)

Finally, a recursive function is obtained for 8y§-4) /Omyj, ie.,

4
ay( (t) _D.y®
amzj yj

al ay\V (t—1)
x [ A(t—1)— B(t—1) - J) . (20
< i:%:ﬂ Omi;

The update rule for the width of the membership functions of
external variables (o;) is

OE(t+1
0ij(t +1) = 04;(t) —774(;0.. ) @D
ij
in which
DE(t+1) 0E(t+1) 0y
80’1']' o 5'%(3) aaij
K (3)
y;
=) e(t+1)-D (%f (22)
k=1 i
oy dy;” <t>
B. (23)
80’@' i NZI_H
2
2 (ygl)(t) - mij)
Ag = e . (24)

)

The recursive function of 8y§4)/ Ooj; is in the following
form:

aysM(t)

—D.y®
80',']‘ yj

(M -

3) Tuning the Membership Functions of the Internal Vari-
ables: The update rule for the center of the membership func-
tions of internal variables (772;;) is

8y]( 1)
ZBt 1) For ) (25)

i=N1+1

. . LOE(t+1)
where
OE(t+1) OE(t+1) 9y
i gy O
K y(3)
=) e(t+1)-D- 2 (27)
— 8m¢j
k=1
and
dy; 3) al oy (#)
= B J — 28
am” y] i:NZI+1 877%” Cl ( )
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where
2 (5 (1) — s
Ci = 52 (29)
ij
8y<4)( t) _D.,®
amij o yj
Ayt —1
< > B(t-1): ya( )—Cl(t—1)>.
i=N1+1 Mg
(30

The update rule for the width of the membership functions of
internal variables () is

. . LOE(t+1)
Gij(t+1) = 645(t) — U r— (31)
where
OE(t+1)  0B(t+1) 0y
66—1‘]’ o o §3) (9(7”
K g
= e(t+1)-D- 2 (32)
— adij
k=1
and
ay](3) ) 3y(4)( )
D=y B-—L——(C, (33)
aO'l'j J =Nl (90’1'1'
where
2
2 (47 () 7 )
Cy = 3 (34)
o3
32/] (1) DO
Baij J
N (4)
Qy; " (t—1)
x< > B(t—l)-JT—CQ(t—l) .
i=N;+1 t
(35)
The initial values of 8y ( )/Omyj, 8y§4) (t)/00;j,

3yj(»4)( )/0n;;, and 8y ( )/ 30U are set to zero. As training
goes on, these pararneters will be updated together with other
free parameters in the network.

III. SIMULATIONS AND RESULTS

This section shows the results and the performance of the
proposed model. EMG data were collected in the Biodynamics
Laboratory. The properties of the filtering methods are high
pass (30 Hz), low pass (500 Hz), and averaging window width
(40 ms). All the EMG data were normalized by the maxima
(EMGmax) recorded from each muscle during a series of
six static calibration exertions for the purposes of magnitude
comparison and data uncertainty reduction.
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Fig. 3. Output after 20 training epochs (the first six are EMG signals, and the
last three are normalized forces). (a) RLD. (b) LLD. (c) RES. (d) LES. (e) RIO.
(f) LIO. (g) Lateral shear force. (h) A—P shear force. (i) Spinal compression.
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Fig. 4. Output after 400 training epochs (the first six are EMG signals, and the
last three are normalized forces). (a) RLD. (b) LLD. (c) RES. (d) LES. (e) RIO.
(f) LIO. (g) Lateral shear force. (h) A—P shear force. (i) Spinal compression.

Different models were built for different task conditions. For
each task condition, the training and test were conducted as
follows. Each time, we take 1/4 of the data out for test and use
the other 3/4 to train the model. We take a different 1/4 for test
and use the rest for training the next time. Continue this process
until all the data are evaluated for test. The principle is that the
data used for test should not be used for training the model.
Otherwise, the generalization capabilities of the model cannot
be proven.
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Rule 1:

IF Kine, (t) is 11(0.443,0.832) and Kine,(t) is 11(0.521, 1.334) and Kines(t) is 2(0.714,1.587)

4
t

and Kiney(t)
{®)
and Kineio(t) is 4(0.493, 1.566) and Kiney (¢
and EMG, (t) is 2(0.025, 1.258) and EMG,

and EM Gy(t) is 1£(0.005,0.074) and EM G

and Kine;

—_— =

)
(®)i
(

t)isp

is p(—1.654, 1.583) and Kines(t) is 1(0.476,1.011) and Kines(t) is p£(—0.803,1.486)

is ¢#(—1.770,2.118) and Kineg(t) is 1(0.746, 1.342) and Kiney(2) is 1£(0.833,1.535)

is 1(=0.017,1.833) and Kinexa (t) is 1s(~0.387, 1.322)
(0.025,1.259) and EM Gs(¢) is 11(0.006, 0.992)

t) is £(0.009, 0.805) and EM Ge(t) is 12(0.104, 1.246)

THEN Force,(t + 1) is 0.443 and Forcey(t + 1) is 0.559 and Forces(t + 1) is 0.758
and EMG,(t + 1) is 0.033 and EMG,(t + 1) is 0.120 and EMGs(t + 1) is 0.267 and
EMG(t + 1) is 0.318 and EMGs(t + 1) is 0.218 and EMGe(t + 1) is 0.102

Fig. 5. First fuzzy rule generated by the RFNN model.

The learning rate of the parameters of feedback connections
(™m;; and 6;5) is ) = 0.02. The learning rate for other parame-
ters (m;j, 0;5, and wy;) is n = 0.01. The initial threshold 3 for
firing strength is set as 0.2. As stated before, the learning rates
for the parameters of external inputs (kinematic variables) and
internal inputs (EMG feedback) are different. Since the initial
values of the parameters of internal inputs are small random
values while the initial values of the parameters of external
inputs are good values with physical meaning, the convergence
of the latter is faster than the convergence of the former. This
can be seen in Figs. 3 and 4. Fig. 3 shows the results obtained
after a small number of epochs (20 epochs). Notice that the
predicted forces (the last three figures) are already quite close to
the actual forces. However, for the EMG signals (the feedback),
the prediction is still very poor. Fig. 4 was obtained after
400 epochs. In this figure, both the forces and the EMG signals
are predicted well, which means the parameters of both the
external inputs and the feedback are well trained.

Fuzzy rules obtained are of the following form as shown
in Fig. 5.

Values in the above fuzzy rule are normalized. To interpret
the rule, they need to be converted to meaningful values.
Membership functions of actual values of Rule 1 are listed in
Tables I and II. All variables in the fuzzy rules generated by the
proposed model are physical variables, which is an advantage of
this model. As we have mentioned in Section I, the fuzzy rules
generated by other types of feedback contain internal variables
that have no physical meaning and, therefore, are difficult to
interpret. For the rules generated by the proposed RFNN model,
we can decompose the kinematics—EMG—force relationship
into kinematics—-EMG relationship, EMG—force relationship,
and kinematics—force relationship, as stated previously. In the
rule listed in Tables I and II, the kinematic variables and EMG
signals are small, and the output forces are also relatively
small. In other rules, we found that forces change in the same
direction as the EMG signals. However, the kinematic—force
relationship is not so simple. After examining all fuzzy rules,
we can conclude that larger EMG signals normally lead to
larger spinal forces, while the relationship does not hold in the
kinematics—force relationship. By comparing and analyzing all
fuzzy rules generated by the RFNN model, some useful infor-
mation can be obtained. For example, some kinematic variables

TABLE 1
MEMBERSHIP FUNCTIONS OF KINEMATIC VARIABLES
AND EMG SIGNALS AT TIME ¢ (RULE 1)

Variable Name
Sagittal trunk moment
Lateral trunk moment

Axis trunk moment
Sagittal trunk angle
Lateral trunk angle
Axis trunk angle
Sagittal trunk velocity
Lateral trunk velocity
Axis trunk velocity
Sagittal trunk acceleration
Lateral trunk acceleration
Axis trunk acceleration

Membership Function
(65.8033, 110.3139)
(75.7623, 47.4398)
(29.1712, 20.5732)
(-52.2221, 13.3591)

(1.0038, 7.5505)
(1.2644, 13.3500)
(19.6938, 44.5477)
(-5.0671, 2.4169)
(-4.2402, 1.4377)
(64.8514, 71.5178)
(1.4666, 15.5876)
(6.5360, 20.5340)

RLD (1) (0.0630, 1.2659)
LLD (9 (0.0715, 1.2661)
RES () (0.3736, 1.2397)
LES (1) (0.3733, 1.2286)
RIO () (0.2561, 1.2566)
LIO () (0.2854, 1.2453)

TABLE 1I
OUTPUT SINGLETON OF FORCES AND EMG
SIGNALS AT TIME ¢t + 1 (RULE 1)

Variable Name Output Singleton
Lateral shear force -38.325
A-P shear force -68.556
Spinal compression -2165.342
RLD (t+ 1) 0.0931
LLD (¢t +1) 0.1004
RES (¢t +1) 0.3035
LES (t+1) 0.4131
RIO (¢t +1) 0.2399
LIO (t +1) 0.3976

(such as axis trunk velocity and lateral trunk acceleration) have
less influence on the spinal forces than other kinematic vari-
ables, according to the widths of their membership functions
(the widths are always large, indicating that the output is not
sensitive to the variable).

A. Predictions for Sagittal Symmetric Motions and
Asymmetrical Motions

In a sagittal symmetric lifting motion, the subject does not
turn his body. The motion is done sagittally. This kind of
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As we expected, the predicted curve does not fit the target
curve as well as predicting sagittal symmetric motions. The
statistical information is given in Section III-B. Considering
the complexity of such motions, the prediction quality of the
asymmetrical motions is still acceptable.

B. Statistical Results

Statistical results are used to evaluate the system perfor-
mance on different types of tasks. The overall mean absolute
errors (MAEs) and percentage errors of different tasks are
shown in Fig. 8. The variations of the lateral shear force, A—P
shear force, and spinal compression are around 300, 800, and
2500 N, respectively. The MAEs are out of such ranges. Since
spinal forces cannot be measured directly, the target spinal
forces were obtained through a biomechanical model, as men-
tioned in Section I. From the figure, we can see that the MAEs
of the predicted sagittal symmetric tasks are much smaller
than those of the predicted asymmetrical tasks. It is reasonable
since the muscular activities are much more complicated in the
asymmetrical tasks.

According to the statistical results, the MAEs are acceptable,
and the performance of the RFNN model is superior to that of
a recurrent neural network (RNN) model presented in [9]. In
[9], the MAEs of sagittal symmetric motions for lateral shear

Sagittal symmetric motions  Asymmetrical motions

Fig. 8. Overall MAEs (force in newtons) and percentage errors of different
types of tasks.

force, A—P shear force, and spinal compression are 14.5, 60.3,
and 152, respectively. For the RFNN model, those values are
12.5, 52.7, and 147.7, respectively. The prediction quality is
improved in the RFNN model. For asymmetrical motions, the
improvement is even more significant.

C. Discussions

EMG signals are influenced not only by kinematic variables
but also by lifting task conditions and difference between
subjects. Therefore, we have to consider those factors. Due
to this fact, we collected task variables and subject variables
(anthropometric characteristics of the subjects).

Task variables include object weight, lifting height, and
asymmetry.

Subject variables include age, body weight, standing height,
shoulder height, upper arm length, lower arm length, elbow
height, spine length, upper leg length, lower leg length, trunk
circumference, trunk depth (pelvis), trunk depth (xyphoid),
trunk breadth (pelvis), and trunk breadth (xyphoid).



108 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 1, FEBRUARY 2007

It is not possible to feed all 12 kinematic variables, three task
variables, and 15 subject variables to the model (and also the
feedback of six EMG signals). It will make the model very
complicated and decrease the generalization ability. Instead, we
developed different models for different task conditions. For
example, the model for task condition “object weight 15 1b,
from knee to elbow, from 30 counterclockwise to sagittal”
and the model for task condition “object 30 Ib, from floor to
waist, from sagittal to 60 clockwise” are different. By this way,
task variables do not need to be fed to the network, and the
specific models for different task conditions can have better
performance than a “universal model.”

For other variables, a pruning process has been done before
building the model. The importance of 27 variables including
12 kinematic variables and 15 subject variables were estimated.
The influence rates of these variables to EMG and forces
were identified using a method called fuzzy average with
fuzzy cluster distribution (FAFCD) [23]. Results indicate that
kinematic variables have much more influence on EMG than
subject variables do. To reduce the input space dimension,
subject variables were not used as input of the model. However,
we still considered three most important subject variables as
identified in [23]. They are standing height, lower arm length,
and spine length. Subjects were grouped according to these
variables, and different models were built for different groups.
For some task conditions, lifting data of more than 70 subjects
were collected. The more subjects are used to train a model, the
better chance the model can predict a new subject. However,
if a subject has very different muscular behaviors, the EMG
and force prediction would be poor. The statistical results were
obtained on a large data set.

In Section III-B, the target spinal forces were obtained
through a biomechanical model. It is impossible to directly
validate biomechanical models of the human spine in vivo;
however, it is possible to indirectly validate the model predic-
tions based on their output. In a biologically assisted model
such as the one used in this paper, the muscle EMG activities
are processed and used as input to a series of biomechanical
relationships that predict spine load as well as moment imposed
on the spine due to the task [24]. While it is not practical to
compare the measured and predicted spine forces in vivo, it is
possible to compare the measured dynamic moments with those
predicted via the EMG signals. In this comparison, several
measures are used to assess model validity: the R? statistic,
which indicates the degree of variability that is accounted
for by the model (since this is a dynamic signal, strong R?
values indicate good model fidelity); the average absolute error,
which considers the magnitude of the difference between the
total measured and predicted dynamic moment signals; and the
muscle gain estimate, which must be within physiologically
realistic bounds for the model to be considered a realistic
representation of muscle load. Several previously published
papers [25]-[27] have established the validity of each of these
measures for each of the three-dimensional forces imposed on
the spine. Given these evaluations, the model is considered to
have good fidelity, repeatability, and physiologically consistent
predictions. Therefore, the output of the biomechanical model
was used as target spinal forces in this paper.

IV. CONCLUSION

A spinal force prediction model was developed using an
RFNN. The EMG feedback represents the muscular activation
dynamics better. At the same time, it utilizes the advantages of
recurrent properties. The model predicts forces directly from
kinematics data, avoiding EMG measurements and the use of
biomechanics model. It can help us understand the relation-
ships between kinematic variables and EMG signals and spinal
forces. An adaptive learning algorithm is derived for the RFNN.
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