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Abstract

The main objective of the study was to model the electromyographic (EMG) responses for 10 trunk muscles in manual-lifting tasks
using the fuzzy relational rule network (FRRN). The FRRN utilized trunk-related variables, including sagittal and lateral trunk
moments, pelvic tilt and pelvic rotation angles, and sagittal, lateral, and twist trunk angles as model inputs. The EMG data for model
training and testing were randomly selected from a set collected for 20 college students. The data represented a total of 24 combinations
of weight lifted (15, 30, 50 lbs), asymmetry (01, 601), and the origin and destination of lift (floor-waist, floor-102 cm, knee-waist, knee-
102 cm), with two replications of each condition. The primary data-driven fuzzy model with relational input partition was trained using
the laboratory EMG data for 10 subjects, and was then tested based on the EMG data for another 10 subjects. The model allowed for
estimating EMG responses for the 10 trunk muscles with the average value of mean absolute error (MAE) of 9.9% (SD ¼ 1.44%). This
study demonstrates that application of fuzzy modeling techniques allows for estimating time domain EMG responses of trunk muscles
due to manual lifting under limited task conditions.

Relevance to industry

Estimation of EMG responses using the proposed fuzzy-based system opens new opportunities for biomechanical modeling of
manual-lifting tasks aimed at prevention of low back disorders at the workplace.
r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Both epidemiological and biomechanical studies have
demonstrated a link between the risk of the low back
disorders (LBDs) and occupational conditions. Specifi-
cally, manual materials-handling (MMH) tasks are asso-
ciated with greater risk of the LBDs. Marras (1992)
documented workplace and individual characteristics to

be highly related to LBDs risk. These factors included (1)
lifting frequency, (2) load moment, (3) trunk lateral
velocity, (4) trunk twisting velocity, and (5) the trunk
sagittal angle. Biomechanical models have been developed
to describe how the external and internal forces imposed on
the body combine to load the spine during manual lifting
(Marras and Granata, 1995). These models often use as
inputs the electromyographic (EMG) data as muscle
activity featuring the internal behavior of the body is
usually described with EMG signals. Therefore, many
biomechanical models heavily rely on the EMG inputs to
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‘drive’ them. Marras and Sommerich (1991) developed an
EMG-driven dynamic three-dimensional motion model to
examine trunk muscle activity patterns and to quantify
biomechanical stresses on the spine during the isokinetic
trunk-lifting exertion.

However, due to work environment conditions, it is
often impractical or impossible to collect quality EMG
data at various industrial or office sites. Typically,
laboratory experiments are performed under precisely
controlled conditions in order to measure muscle activity
during the specific trunk motions. Therefore, laboratory-
based biomechanical models, which utilize common
laboratory instruments (EMG, dynamometers, etc.), are
intended only for use under controlled conditions (Marras
and Sommerich, 1991).

2. Objectives

Electromyography can be used as a measure of muscle
tension for estimating the amount of muscle activity and
evaluating task performance. As discussed by Lee et al.
(2003), the EMG data are often needed as inputs for the
‘‘EMG-driven’’ and ‘‘optimization-based’’ biomechanics
models. However, it is often impractical to collect EMG
activity in industry, for example due to hostility of work
environment or requirements of the production process.
Laboratory experiments are, therefore, performed under
precisely controlled conditions to measure muscle activity
during the specific trunk motions.

The main objective of the present study was to estimate
the EMG activities (expressed in time domain) for 10 trunk
muscles due to manual lifting tasks using the soft
computing methodology of fuzzy relational rule network
(FRRN). The proposed model utilizes trunk moments,
and trunk and pelvic angles as input variables. Fig. 1
below illustrates the overall structure of the developed
model.

3. Soft computing techniques

3.1. Fuzzy logic

In the last 15 years, fuzzy systems that apply fuzzy logic
for pattern recognition and approximate information
processing and artificial neural networks have been used
in variety of areas, including process control, engineering,
management, business, medical diagnosis, biomechanics,
human factors and cognitive simulations (Karwowski and
Ayoub, 1984; Karwowski et al., 1984; Karwowski, 1985;
Karwowski and Mital, 1986; Karwowski et al., 1987;
Karwowski et al., 1999). Fuzzy logic that utilizes if–then
rules (Zadeh, 1975a–c, 1994; Karwowski, 1992) provide a
mathematical framework that allows to model the un-
certainties associated with approximate reasoning, espe-
cially for the control systems where mathematical models
are difficult to derive, including human perceptual and
cognitive processes (information processing). For example,
Jacobs (1997) developed a fuzzy logic-based control model
of human stance that utilizes linguistic descriptors of
muscular activation (i.e. large, medium, small, demonstrat-
ing that the human nervous system simplifies the control of
movement in terms of global variables.

3.2. Artificial neural systems

Artificial neural systems are simplified mathematical
models of the brain-like systems that function as parallel-
distributed computing networks that can be trained to
learn new associations, functional dependencies and new
patterns (Zurada, 1992; Lin and Lee, 1996; Fuller, 2000).
Artificial neural networks (NN) are adaptive, that is can
automatically adjust (their weights) to modify their
behavior in response to nonlinear dynamics of their
environment. Over the last few years, NN have been
successfully applied in medicine and biomedical studies,
including research on the amino acid sequencing, reactions
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to drug treatments, lung disease, cancer screening, classi-
fication of medical images, clinical diagnosis low back pain,
and classification of low back injury (Zurada et al., 1997).

3.3. A neuro-fuzzy modeling and hybrid systems

While fuzzy logic allows for an inference mechanism
under uncertainty, NN affords system learning, adapta-
tion, parallelizm of information processing and general-
ization over time. A hybrid system, called a neuro-fuzzy
system, which combines the concepts of fuzzy logic and
NN (Lin and Lee, 1996; Fuller, 2000) enables development
of the more human-like representations of the nonlinear
biological and technological systems, including human
neuromuscular dynamics and cognitive behaviors (Zurada
et al., 1997; Jacobs, 1997). The behavior of fuzzy systems
can be explained based on the fuzzy rules (of implication),
but in general the new knowledge acquisition is difficult.
NN can automatically acquire new knowledge through the
well-defined algorithms and extraction of fuzzy rules form
numerical data (Hou et al., 2005). NN are often used to
tune membership functions of fuzzy control systems. A
hybrid, fuzzy NN, is a network with fuzzy signals and/or
fuzzy weights (Fuller, 2000). Such a system and can
approximate any continuous fuzzy function in a specific
domain and are capable of self-learning and self-organizing
in a real-time, under the conditions of changes that occur in
a multitude of relevant variables.

4. Soft computing studies of muscular exertions

The existing body of literature shows a number of studies
that utilized soft computing techniques, such as, fuzzy
logic, NN and genetic algorithm for the classification,
pattern recognition, to study different aspects of muscular
exertions. Chauvet et al. (2003), in their study, proposed an
iterative classification algorithm using fuzzy-logic techni-
ques. The classification method would allow automatic
decomposition of EMG signals into their constituent
motor unit action potentials (MUAPs). The method was
utilized on six groups of 20 simulated EMG signals with a
maximum and an average mean error rate of 2.13% and
1.37%, respectively. The study also utilized the proposed
method on real surface EMG signals ranged from 10% to
40% of the maximum voluntary contraction. The algo-
rithm was able to detect correctly detect 21 MUAPs,
compared to 29 MUAPs detected by human expert. The
method was found to be efficient and attractive for
noninvasive muscle activity investigation.

Chan et al. (2000) used a fuzzy approach for the
classification of EMG signals for prosthesis control. In
this study, the EMG signals were divided into several time
segments in order to maintain data pattern structure. The
study utilized a trainable fuzzy system that used an
unsupervised algorithm for clustering that data. The
clustering results were then used in initializing the fuzzy
system parameters. Then, fuzzy rules in the system were

trained with the back-propagation algorithm. In the study,
the fuzzy system was compared with an artificial NN
method. Both the methods obtained similar results.
However, the fuzzy approach was considered superior
with respect to recognition rate, sensitivity to overtraining,
and consistent output.
In their study, Hussein and Granat (2002) proposed for a

neuro-fuzzy EMG classifier for the intention detection of
the patient. In this study, following use of a Gabor
Matching Pursuit (GMP) and genetic algorithms for
feature extraction, an adaptive neuro-fuzzy inference
system (ANFIS) to classify the EMG signals. The study
used 30 standing up and 30 sitting down EMG signals with
seven-bell membership function and 30 rules. It was found
that the neuro-fuzzy classifier was able to correctly identify
29 standing and 28 sitting EMG signals out of 30 signals,
respectively. The negative false classification was 1 and 2
for standing and sitting positions, respectively. Therefore,
the study proved the neuro-fuzzy classifier as a highly
sensitive and specific classification scheme.
Micera et al. (1999) utilized a hybrid approach to EMG

pattern analysis for classification of arm movements. The
hybrid model included generalized likelihood ratio (GLR)
test, the principal component analysis (PCA), autoregressive
(AR) parametric modeling, and cepstral analysis with Abe-
Lan fuzzy classification approach. The study included EMG
signals of superior trapezius, anterior deltoid, and pectoralis
major during sagittal, contralateral, and ipsilateral pointing
with the arm. The study found the classification method to
correctly classify all the EMG patterns related to the selected
planar arm pointing movements. Micera et al. (2000), in a
similar study, reported use of self-organizing maps (SOM),
fuzzy c-means (FCM), multilayer perceptrons (MLP), and
the Abe-Lan fuzzy network in classifying those three
muscles in the same arm pointing task (see Micera et al.,
1999). The study found the range of classification accuracy
(percent) as 47–53, 50–57, 83–87, and 90–97 for SOM,
FCM, MLP, and Abe-Lan method, respectively.
Lee et al. (2003) developed a neuro-fuzzy model for

predicting peak EMG values for trunk muscles based on
lifting task variables. The model utilized two task variables,
i.e. trunk moment and trunk velocity, as inputs, and 10-
muscle activities as outputs. The input and output variables
were represented using the fuzzy membership functions.
Initial fuzzy rules were generated by NN using true EMG
data. The final fuzzy rules were used to derive the
prediction model. The model was developed based on
EMG data for 8 subjects, and validated using the EMG
data for another 4 subjects. The model allowed to estimate
the normalized peak EMG values only with the mean
absolute error (MAE) ranging from 4.97% to 13.16%
(average ¼ 8.43%; SD ¼ 2.87%), and average value of the
mean absolute difference between the real and estimated
EMG of 6.4% (SD ¼ 3.39%). The authors concluded that
estimation of EMG responses in manual lifting tasks is
feasible, and that model performance could be improved
by increasing the number of input variables.
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5. Methods and procedures

5.1. Experimental procedures and data collection

The experimental data utilized in this study was collected
at the Ohio State University Biomechanics Laboratory.
Trunk kinematics during experimental lifting tasks was
recorded using the lumbar motion monitor (LMM). The
LMM is essentially an exoskeleton of the spine in the form
of a triaxial electro-goniometer that measures the instanta-
neous three-dimensional position, velocity, and accelera-
tion. Table 1 shows all kinematic variables collected during
the experimental trials and utilized in this study. For
additional details about the design, accuracy, and applica-
tion of the LMM, refer to Marras et al. (1992).

The EMG data was collected for 10 trunk muscles (see
Fig. 2), including the right and left pairs of latissimus dorsi,
erector spinae, rectus abdominus, external obliques, and
internal obliques (see listing in Table 1). The locations of
the electrodes were as follows: (1) latissimus dorsi
muscles—at the most lateral portion of the muscle at the
ninth thoracic vertebrae, (2) erector spinae muscles—over
the largest muscle mass located by palpation and approxi-
mately 4 cm from the midline of the spine, (3) rectus
abdominus muscle—3 cm from midline of the abdomen
and 2 cm above the umbilicus, (4) external oblique
muscles—10 cm from midline of the abdomen and 4 cm
above the ilium at an angle of 451, and (5) internal oblique
muscles—4 cm above the ilium in the lumbar triangle at an
angle of 451 (Mirka and Marras, 1993).

The EMG activity was collected from the five pairs of
trunk muscles through the use of bipolar silver–silver
chloride surface electrodes using standard EMG-recording

technique (National Institute for Occupational Safety and
Health (NIOSH), 1991; Marras, 1990; Marras and
Granata, 1995). The subjects were then placed in a rigid
structure where maximum isometric exertions were per-
formed. These standard maximum exertions were used for
normalization of the EMG data (Marras and Mirka, 1993)
include: extension at 201 of flexion, flexion in the upright
posture, right and left lateral flexion in the upright posture,
and right and left twisting in the upright posture.
The EMG signals were pre-amplified, high-passed

filtered at 30Hz, low-passed filtered at 1000Hz, rectified,
and integrated via a 20ms sliding window hardware filter.
Full-wave rectification of the raw data was done by
applying the absolute value function to the raw data.
Full-wave rectification folds the negative part of the raw
signal above zero reference to join the positive half of the
signal. Generally, full-wave rectification is desirable when
the study objective is to examine the total amount of
energy contained by the signal (Marras and Granata,
1995).
A force plate and set of electro-goniometers was used to

accurately estimate the moments supported by the trunk
during the lifts. The electro-goniometers assess the position
of L5/S1 relative to the center of the force plate as well as
measure the pelvic/hip orientation. The force and moments
measured at the center of the force plate are then translated
and rotated to L5/S1 by the method developed by Fathallah
et al. (1997).

5.2. Experimental EMG data used in FRN model
development

The data for FRRN model training and testing were
randomly selected from the EMG data set of 20 male
college students who served as subjects. (The EMG data
for female subjects was also collected and the results are
described elsewhere; see Karwowski et al., 2006). The
utilized EMG data represented a total of 24 trials
(3" 2" 4), with the combination of weight (15, 30, 50)
lifted, asymmetry (01, 601), origin and destination of lift
(floor-waist, floor-102 cm, knee-waist, knee-102 cm), and
two replications of each trial, giving a total of 960 (time
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Table 1
Description of muscles and trunk-related model input variables

Acronym

Muscle description
RLD Right lat. dorsi
LLD Left lat. dorsi
RES Right erector spinae
LES Left erector spine
RRA Right rectus abdominus
LRA Left rectus abdominus
REO Right external oblique
LEO Left external oblique
RIO Right internal oblique
LIO Left internal oblique

Trunk-related variables
SM Sagittal moment
LM Lateral moment
AM Axial moment
PTAN Pelvic tilt angle
PRAN Pelvic rotation angle
STA Sagittal trunk angle
LTAN Lateral trunk angle
TTAN Twist trunk angle

Spinal Column

Erector Spinae

Latissimus Dorsi

External Oblique

Internal Oblique

Front

Back

Rectus Abdominus

Fig. 2. Trunk muscles used for EMG data collection in the laboratory
study (after Marras et al., 2002).
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domain) EMG samples (24" 2" 20 subjects). The experi-
mental conditions for the study are shown in Table 2.

6. An EMG estimation model

In this study, the EMG estimation model was developed
based on the methodologies of soft computing (Kosko, 1992;
Karwowski et al., 1999). The applied fuzzy rule-based systems
combine the universal approximation property with the ability
to represent imprecise verbal knowledge expressed by decision
rules. The hybridization of fuzzy systems and artificial NN has
led to a new modeling paradigm, called fuzzy-NN (Ross,
1995; Wang and Mendel, 1992). This paradigm makes it
possible to not only estimate a model from data but also
capture the knowledge underlying the model behavior.

6.1. A FRRN

FRRN is a modification of a conventional fuzzy rule-
based system which, in addition to modeling the inpu-
t–output relationship, allows for modeling linear relation-
ships between the input variables of the system (Gaweda et
al., 2001, 2002). It has been shown that this approach
produces accurate system models with reduced complexity.
The FRRN can be represented schematically as a three-
layer network structure (Gaweda and Zurada, 2003).

6.1.1. Layer 1—input membership functions
The linear relationship between two input variables is

modeled by a two-dimensional Gaussian membership

function of the form:

mðx1; x2; v1; v2; s1; s2; rÞ ¼ exp %
x1 % v1

s1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% r2

p
" #2

 "

þ
x2 % v2

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% r2

p
" #2

%2r
ðx1 % v1Þðx2 % v2Þ

s1s2ð1% r2Þ

##

, ð1Þ

where x1 and x2 are the input arguments, (v1, v2 ) are the
center coordinates, (s1, s2 ) are the widths of the Gaussians
projected on the axes of x1 and x2, respectively, and r is the
strength of the linear relationship (correlation coefficient)
between x1 and x2.

6.2. Layer 2—rule activations

The rule activation nodes receive the membership values
from the Layer 1 nodes as inputs and produce the rule
activation levels as outputs. The rule activation is
determined by applying the product T-norm over the
corresponding membership values.

6.3. Layer 3—defuzzification

The total FRRN output is computed as in the
Takagi–Sugeno model (Takagi and Sugeno, 1985). In TS-
model, the rule consequents are linear combinations of the
input variables. Therefore, the accumulated model output
is a weighted combination of local linear models (hyper-
planes). For the purpose of knowedge extraction, these
local models can be transformed into the position-gradient
representation (Sugeno and Yasukawa, 1993).
Schematic representation of FRRN with three inputs

and two rule nodes is shown in Fig. 3. In this figure, the
symbols x1 through x3 represent a three-element input
vector, Ai

jk represents a two-dimensional membership
function (1) of the input variables j and k in rule i. The
symbol bij represents a coefficient of a local linear model
related to rule i and input variable j (Fig. 4).

6.4. EMG modeling approach

In this work, the FRRN was used to perform a mapping
from the inputs space consisting of variables representing
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Table 2
Experimental conditions for EMG data collection utilized in this study

Trial Weight
(LBS)

Asymmetry
(deg)

Origin
(CM)

Destination
(CM)

1 15 60 Floor Waist
2 15 60 Floor 102.00
3 15 60 Knee Waist
4 15 60 Knee 102.00
5 15 0 Floor Waist
6 15 0 Floor 102.00
7 15 0 Knee Waist
8 15 0 Knee 102.00
9 30 60 Floor Waist
10 30 60 Floor 102.00
11 30 60 Knee Waist
12 30 60 Knee 102.00
13 30 0 Floor Waist
14 30 0 Floor 102.00
15 30 0 Knee Waist
16 30 0 Knee 102.00
17 50 60 Floor Waist
18 50 60 Floor 102.00
19 50 60 Knee Waist
20 50 60 Knee 102.00
21 50 0 Floor Waist
22 50 0 Floor 102.00
23 50 0 Knee Waist
24 50 0 Knee 102.00

Fig. 3. Example of the simplified diagram of a 3-input variable fuzzy
relational rule network (FRRN).
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trunk dynamics, i.e., sagittal, lateral, and axial moments,
pelvic tilt and rotation angles, and sagittal, lateral, and
axial trunk angles (see Table 1) into the output space of 10
EMG signals (entries 1 through 10 in Table 1). To
accomplish this, multiple input single output (MISO)
approach was adopted, allowing developing of 10 separate
prediction models. A single model maps multiple trunk-
related variables into one of the 10 EMG signals. The
mapping performed by the model is static, i.e., the EMG
signal at time instant t is estimated from the trunk-related
variables measured at the same time instant t. For clarity of
the presentation, we will omit the time index in the
following presentation.

With numerical data available, the structure and the
parameters of the FRRN model can be automatically
identified using a data-driven method described in (Gawe-
da, 2002). More specifically, the structure generation
determines the number of nodes in layer 2, i.e., the number

of fuzzy rules and discovery of significant linear relation-
ships between the input variables. The parameter estima-
tion finds the values of v, s, and r in Eq. (1) and the
coefficients b in Fig. 1. Further details of the method can be
found in Gaweda and Zurada (2003).

7. Results

7.1. EMG estimation model (EMG-E)

The developed EMG estimation FRRN-based model
utilized fuzzy rules with different pairs of trunk-related
fuzzy variables as inputs. Table 3 provides examples of
such rules for LES muscle for a single lifting trial. For each
out of ten output variables (EMG values), linear correla-
tion analysis was used to reveal the most significant trunk-
related variables to be used as inputs. Fig. 6 presents
examples of the fuzzy representation of input variables
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Fig. 4. Examples of FRRN generated one-dimensional membership functions for trunk-related variables.
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corresponding to the fuzzy rule R1 shown in Table 4. Fig. 5
shows examples of two-dimensional fuzzy membership
functions for FRRN-generated fuzzy rules.

The EMG-E model was trained using data for 10
subjects and was tested using data from another ten
subjects. A specific example of the outcome of model
training with four fuzzy rules for RES muscle for a single
trial #10 is shown in Table 4. Fig. 6 shows examples of
model-generated membership functions corresponding to
symbols A1 through A3 in the rules shown in Table 4. An
example of the two-dimensional membership function
representation of these rules is shown in Fig. 7.

For example, for a particular model that estimates EMG
signal for RES muscle, the lateral trunk angle and pelvic
rotation angle were found to be the most important trunk
dynamics variables. The rules can be interpreted as follows.
The symbols A1 through A4 represent the membership
functions shown in Fig. 6a, b. Based on the shape and
location of the membership function, a domain expert can
assign a linguistic label to each symbol. For example, A1

for lateral trunk angle could be interpreted and labeled as

‘‘large negative’’ (see Fig. 6a), while A1 for pelvic rotation
angle in Fig. 6b could be labeled as ‘‘close to zero’’. Using
this interpretation, Rule 1 could read ‘‘If lateral trunk
angle is large negative and pelvic rotation angle is close to
zero then the current value of RES can be computed using
the equation: 0.0034 Lateral Trunk Angle+0.0248 Pelvic
Rotation Angle+0.2292’’.
The above implies that this equation has a strong

influence on the model output as long as the actual value
lateral trunk angle is large negative AND the actual value
of pelvic rotation angle is close to zero. On the other hand,
Rule 3 should be interpreted as follows. Labeling A3 for
lateral trunk angle as ‘‘small negative’’ (see Fig. 6a) and for
pelvic rotation angle as ‘‘medium positive’’ (see Fig. 6b),
Rule 3 reads ‘‘If small negative lateral trunk angle is
strongly positively correlated with medium positive pelvic
rotation angle then the current value of RES can be
computed using equation: 0.0209 Lateral Trunk An-
gle%0.0060 Pelvic Rotation Angle+0.8599’’.
The positive correlation between small negative lateral

trunk angle and ‘‘medium positive’’ pelvic rotation angle can
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Table 3
Example of fuzzy two-dimensional fuzzy rules for LES muscle

RULE1:
IF

A11 Sagittal Moment CORR (%0.92) A16 Sagittal Trunk Angle AND
A11 Sagittal Moment CORR (%0.62) A15 Pelvic Rotation Angle AND
A12 Lateral Moment CORR (0.99) A18 Twist Trunk Angle AND
A13 Axial Moment CORR ( 0.98) A14 Pelvic Tilt Angle AND
A14 Pelvic Tilt Angle CORR ( 0.95) A15 Pelvic Rotation Angle AND
A16 Sagittal Trunk Angle CORR ( 0.75) A17 Lateral Trunk Angle AND
A17 Lateral Trunk Angle CORR ( 0.57) A18 Twist Trunk Angle

THEN
Left Erector Spinae is 1.369157 AND
d (Left Erector Spinae)/d(Sagittal Moment) is 0.007530 AND
d (Left Erector Spinae)/d(Lateral Moment) is %0.003406 AND
d (Left Erector Spinae)/d(Axial Moment) is %0.001363 AND
d (Left Erector Spinae)/d(Pelvic Tilt Angle) is 0.033912 AND
d (Left Erector Spinae)/d(Pelvic Rotation Angle) is %0.021704 AND
d (Left Erector Spinae)/d(Sagittal Trunk Angle) is 0.028560 AND
d (Left Erector Spinae)/d(Lateral Trunk Angle) is 0.067151 AND
d (Left Erector Spinae)/d(Twist Trunk Angle) is %0.050245

RULE2:
IF

A21 Sagittal Moment CORR (%0.16) A25 Pelvic Rotation Angle AND
A21 Sagittal Moment CORR (%0.78) A22 Lateral Moment AND
A23 Axial Moment CORR ( 0.98) A24 Pelvic Tilt Angle AND
A24 Pelvic Tilt Angle CORR (0.92) A25 Pelvic Rotation Angle AND
A24 Pelvic Tilt Angle CORR (%0.26) A27 Lateral Trunk Angle AND
A25 Pelvic Rotation Angle CORR (%0.02) A26 Sagittal Trunk Angle AND
A26 Sagittal Trunk Angle CORR (0.87) A28 Twist Trunk Angle

THEN
Left Erector Spinae is 0.623423 AND
d (Left Erector Spinae)/d(Sagittal Moment) is 0.004495 AND
d (Left Erector Spinae)/d(Lateral Moment) is 0.001075 AND
d (Left Erector Spinae)/d(Axial Moment) is %0.004698 AND
d (Left Erector Spinae)/d(Pelvic Tilt Angle) is 0.020090 AND
d (Left Erector Spinae)/d(Pelvic Rotation Angle) is 0.005375 AND
d (Left Erector Spinae)/d(Sagittal Trunk Angle) is %0.002149 AND
d (Left Erector Spinae)/d(Lateral Trunk Angle) is 0.002746 AND
d (Left Erector Spinae)/d(Twist Trunk Angle) is 0.011573

Note: The acronym CORR(p) represents ‘‘correlated to degree p’’.
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be interpreted as follows. The centers of the member-
ship functions A3 are %15 for the lateral trunk angle and
22 for the pelvic rotation angle. Rule 3 states that the
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Fig. 6. (a) Examples of unidimensional fuzzy membership functions for
RES model in Trial 10. (b) Examples of unidimensional fuzzy membership
functions for LLD model in Trial 24. Representation of two-dimensional
membership functions for FRRN-generated fuzzy rules.

Table 4
Examples of the FRRN-generated fuzzy rules for the RES muscle in trial
10

R_1:
IF

Lateral Trunk Angle is A1 AND Pelvic Rotation Angle is A1
THEN

RES ¼ 0.0034 Lateral Trunk Angle+0.0248 Pelvic Rotation
Angle+0.2292

R_2:
IF

Lateral Trunk Angle is A2 AND Pelvic Rotation Angle is A2
THEN

RES ¼ 0.0146 Lateral Trunk Angle+0.0034 Pelvic Rotation
Angle+0.2845

R_3:
IF

A3 Lateral Trunk Angle CORR (0.69) A3 Pelvic Rotation
Angle

THEN
RES ¼ 0.0209 Lateral Trunk Angle—0.0060 Pelvic Rotation
Angle+0.8599

R_4:
IF

A4 Lateral Trunk Angle CORR (0.91) A4 Pelvic Rotation
Angle

THEN
RES ¼ 0.0265 Lateral Trunk Angle—0.0073 Pelvic Rotation
Angle+1.3979

Fig. 5. Graphical representation of two-dimensional membership func-
tions for FRRN-generated fuzzy rules.
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corresponding RES equation has a strong influence on the
model output as long as the actual value of lateral trunk
angle is small negative and less than %15 while the actual
value of pelvic rotation angle is medium positive and less
than 22. The equation has also a strong influence on the
model output when the actual value of lateral trunk angle
is small negative and greater than %15 while the actual
value of pelvic rotation angle is medium positive and
greater than 22. It should be pointed out that the input
variables in Rules 1 and 2 do not exhibit linear relation-
ship. This can be better observed in the two-dimensional
membership functions (see Fig. 7), which are three-
dimensional plots of Eq. (1).

7.2. EMG estimation model validation

The developed model was validated by comparing the
estimated EMG values with the EMG data for the 10 test
subjects (a total of 480 EMG signals for each of the
ten muscles tested) that were not used in model develop-
ment. Examples of the predicted EMG signals are shown
in Fig. 8. The value of the MAE indicates the error
between the actual (EMGACT) values and model estimates
(EMGEST):

MAE ¼
X

t

ðEMGACTðtÞ % EMGESTðtÞÞ=Nt,

where symbol t denotes index of data vector at time t and
Nt is the number of data samples.

Overall, across all 10-trunk muscles, the average value of
MAE was 6.03% (SD ¼ 1.36%) for training data (see
Table 5) and 9.9% (SD ¼ 1.44%) for testing data (see
Table 6). The largest MAE value for testing data occurred
for the right external oblique (REO) muscle RRA under
conditions of asymmetrical lifting task, with 601 of trunk
twisting. Fig. 9 illustrates the overall quality of the
developed EMG estimation system for all investigated
muscles.

8. Conclusions

As discussed by Marras (2005), the knowledge of how
the trunk muscles are recruited during a particular work
task is the key to understanding the magnitude of spine
loading and risk of low back disorders due to the lifting
tasks. Thus, it is important to develop a system that is
capable of realistically predicting multiple trunk muscle
activities in response to a variety of workplace dimensions
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Fig. 8. (a) Demonstration of EMG estimation for a given subject under
single lifting trial (RES muscle). (b) Demonstration of EMG estimation
for a given subject under single lifting trials (LLD muscle).

Fig. 7. Example of two-dimensional FRRN rules for RES model for a
single-lifting trial.
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Table 5
Mean absolute error (%) for FRRN model training EMG data

Trial RLD LLD RES LES RRA LRA REO LEO LIO RIO

1 4.3 7.2 6.8 5.7 4.3 4.9 2.8 3.4 4.9 5.0
2 3.5 6.2 3.9 5.6 3.0 9.7 6.2 9.8 5.6 9.5
3 5.8 7.2 7.7 7.2 3.8 7.5 3.0 3.6 4.4 5.0
4 3.4 3.4 4.0 7.6 3.9 5.9 4.4 7.6 5.0 6.1
5 4.2 8.9 4.7 5.3 3.1 4.3 6.9 6.4 5.4 8.3
6 5.5 6.5 6.3 5.6 11.2 7.9 7.1 9.8 7.1 12.0
7 7.4 7.1 5.3 4.4 4.8 4.1 4.9 5.3 4.5 5.5
8 5.8 8.9 6.2 5.8 6.0 6.9 10.4 10.6 12.0 11.7
9 12.1 9.5 8.8 11.4 11.0 11.4 12.6 14.9 10.5 11.1
10 13.0 13.0 12.5 10.9 11.3 13.9 11.4 11.8 12.7 11.6
11 12.3 11.5 13.1 13.0 12.1 10.1 10.9 11.5 13.4 10.7
12 11.5 11.3 10.3 12.6 8.1 10.4 11.0 9.6 9.5 11.5
13 8.0 9.1 10.5 12.0 8.4 11.0 9.8 10.3 9.4 10.7
14 9.3 9.7 7.9 7.5 10.5 11.4 9.5 9.5 12.7 11.1
15 11.9 9.5 8.2 10.1 13.0 8.8 9.9 10.3 8.6 12.3
16 10.6 8.6 1.8 1.2 1.4 1.8 1.5 1.6 1.2 1.7
17 1.7 2.0 1.8 2.2 1.9 1.8 1.6 2.0 2.3 2.8
18 2.3 2.7 2.2 1.8 1.6 2.8 1.6 1.4 1.7 1.1
19 1.2 1.8 1.3 1.7 2.8 2.0 1.9 1.3 1.8 1.8
20 1.8 1.3 1.2 1.3 1.6 1.4 0.9 1.4 1.4 2.4
21 1.6 1.7 1.8 1.5 1.6 1.3 2.7 2.7 2.4 2.2
22 2.2 1.7 1.7 2.5 1.4 1.1 1.2 1.2 1.2 1.2
23 1.4 2.0 2.5 2.5 1.4 1.3 1.8 1.2 2.1 2.7
24 2.3 2.4 1.3 1.7 1.1 1.5 2.6 2.6 2.6 4.9
25 1.9 1.9 1.7 2.6 4.4 5.0 4.1 3.9 3.3 2.9
26 2.7 2.5 3.6 2.7 2.2 1.9 1.2 1.2 1.6 2.0
27 4.9 3.1 2.2 1.7 1.7 2.4 2.4 2.0 2.6 2.3
28 2.3 2.4 1.2 2.6 3.5 3.1 3.2 4.2 3.2 2.3
29 3.4 1.8 3.6 4.5 4.0 3.6 3.2 4.6 2.3 2.7
30 2.8 2.2 1.9 2.2 1.8 2.8 1.7 2.4 3.7 3.5
31 2.9 2.6 2.8 3.6 9.5 8.1 10.0 7.9 6.5 8.1
32 7.3 9.1 11.3 11.2 9.7 8.7 11.2 11.7 8.6 12.8
33 12.2 15.6 10.8 11.3 10.4 12.7 10.8 9.3 10.2 11.7
34 8.8 9.6 12.2 9.2 8.2 8.3 11.5 10.8 9.8 11.7
35 10.7 8.7 10.8 9.3 10.4 11.6 7.0 8.4 5.8 8.1
36 7.0 5.3 5.7 10.3 7.9 6.6 6.2 6.8 6.6 6.3
37 8.7 6.9 5.2 6.3 6.7 6.3 9.8 10.3 6.5 8.3
38 9.9 10.4 8.9 8.0 7.4 7.9 6.6 8.9 7.4 6.6

Table 6
Mean absolute error (%) for FRRN model testing EMG data

Trial RLD LLD RES LES RRA LRA REO LEO LIO RIO

1 6.8 7.1 5.0 9.0 4.9 6.9 7.1 7.5 6.6 11.2
2 8.1 8.9 10.6 13.5 9.2 17.3 15.9 14.5 8.0 15.5
3 17.4 11.6 15.1 18.7 5.0 8.3 7.5 7.0 6.0 9.8
4 7.2 8.9 11.0 11.3 6.3 11.0 11.2 14.6 8.3 7.6
5 6.1 8.9 8.1 10.2 5.8 5.3 13.5 12.5 8.0 8.7
6 10.4 7.5 6.3 7.1 27.5 11.1 13.9 18.2 14.3 14.6
7 10.2 17.9 5.4 5.7 6.3 5.8 7.5 8.0 7.7 6.6
8 12.2 11.6 8.4 11.9 7.5 10.2 11.9 15.9 15.8 14.1
9 15.5 17.2 21.1 21.0 14.4 11.7 14.8 15.0 11.1 15.5
10 14.9 14.8 13.5 12.4 11.1 12.9 20.7 14.2 14.8 12.0
11 13.1 15.5 13.3 16.5 15.1 14.8 12.9 16.3 11.8 15.6
12 11.0 14.4 13.4 17.0 14.8 10.5 13.2 18.6 13.6 15.5
13 23.8 18.9 14.5 15.5 16.0 15.3 16.2 14.7 17.9 14.2
14 13.6 13.9 13.5 12.6 19.3 14.6 14.7 12.0 17.1 13.0
15 16.2 18.3 13.8 13.1 14.7 15.8 12.8 13.8 14.9 17.2
16 17.0 13.4 4.0 3.4 3.5 3.9 3.9 3.9 3.4 3.5
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(physical, psychosocial, and individual). In our earlier
study (Lee et al., 2003) we have developed a neuro-fuzzy
model for estimating only the normalized peak EMG
values for 10-trunk muscles based on two task variables,
i.e. trunk moment and trunk velocity as inputs. We have
postulated that concluded that estimation of the peak
EMG responses in manual lifting tasks was feasible, and

that model performance could be improved by increasing
the number of system input variables.
The present study focused, for the first time, on

estimating the time domain EMG responses of human
trunk muscles due to manual lifting based on different set
of input variables, namely trunk angels and moments and
pelvic tilt and rotation angles. The results showed that
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Table 6 (continued )

Trial RLD LLD RES LES RRA LRA REO LEO LIO RIO

17 4.4 5.0 3.8 5.4 4.7 4.3 3.6 3.9 4.6 5.3
18 4.6 5.3 5.3 4.8 4.1 5.8 3.8 4.2 3.9 3.3
19 5.2 3.1 3.5 4.0 4.4 4.3 4.2 4.2 5.0 4.8
20 4.5 3.0 3.0 3.1 3.5 4.2 3.3 3.0 4.8 5.3
21 3.0 3.5 3.7 4.0 3.4 3.9 5.0 5.0 3.5 4.4
22 4.8 5.1 3.8 4.1 4.3 3.5 3.0 3.1 3.6 3.7
23 2.5 3.2 4.7 4.1 3.2 4.0 4.3 5.0 6.6 4.9
24 4.5 3.7 3.5 4.3 3.5 3.3 5.2 6.2 4.1 4.0
25 3.5 3.1 3.9 6.7 8.1 7.1 3.7 5.4 5.8 6.3
26 4.0 4.3 5.5 4.5 3.5 4.2 3.4 3.6 4.3 4.0
27 5.6 5.8 4.1 4.5 5.3 4.7 6.3 5.8 5.4 3.6
28 3.6 4.0 7.5 3.0 7.1 8.7 3.3 5.2 4.0 4.2
29 3.5 3.7 9.0 11.3 5.7 6.3 6.1 6.9 5.5 5.5
30 6.0 5.6 5.0 3.7 3.2 5.0 4.5 3.2 7.5 7.6
31 5.0 4.7 5.3 4.0 15.1 12.9 9.5 13.3 15.8 14.8
32 14.0 13.8 12.1 18.5 10.4 17.6 27.0 15.4 11.0 12.7
33 11.6 18.5 15.1 19.1 19.4 22.8 19.0 17.7 14.8 21.2
34 15.1 10.1 12.8 12.5 14.7 13.7 19.4 18.0 10.0 12.5
35 12.2 19.8 18.7 18.4 18.7 16.7 14.3 14.9 20.7 22.3
36 14.5 13.3 15.5 15.8 15.4 13.3 15.9 15.0 13.1 11.9
37 18.9 12.8 14.9 9.8 14.4 17.3 14.8 16.1 14.3 14.4
38 16.2 14.5 16.7 20.3 15.8 12.6 12.9 15.7 14.4 17.2

Fig. 9. Average mean absolute errors for training (top) and testing (bottom) EMG estimation results.
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application of the Fuzzy Relational Rule Network provides
for a reasonable level of accuracy in estimating time
domain EMG responses for a limited lifting task condi-
tions. Given the recent advances in soft computing
methodology, including neuro-fuzzy modeling techniques,
one can reasonably expect that developed model can be
extended to different lifting task conditions. Furthermore,
model performance with respect to quality of the EMG
estimations can still be improved by incorporating addi-
tional trunk kinematics variables, such as sagittal, lateral
and axial trunk velocities and accelerations, as well as
individual characteristics of the subjects (age, height,
weight, etc.) as inputs to the model.

Future efforts will focus on utilizing the spine motion
dynamics to simultaneously estimate EMG activity for
trunk muscles with due consideration of the related muscle
coactivity under a greater number of lifting task condi-
tions. Future efforts will also aim at developing a soft
computing-based spine-loading estimating system capable
of accounting for musculoskeletal responses to variety of
physical loads under a broad range of manual lifting tasks
(Hou et al., 2005, 2006). This will require development of
the hybrid neuro-fuzzy system based upon extensive
databases that are capable of accounting for relevant
workplace-related factors, and consideration of psychoso-
cial factors, and individual characteristics of the worker.
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