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The main objective of this study was to develop a hybrid neuro-fuzzy system for
estimating the magnitude of EMG responses of 10 trunk muscles based on two
lifting task variables (trunk velocity and trunk moment) as model inputs. The
input and output variables were represented using the fuzzy membership
functions. The initial fuzzy rules were generated by the neural network using true
EMG data. Two different laboratory-derived EMG data sets were used for
model development and validation, respectively. The mean absolute error
(MAE) between the actual and model-estimated normalized EMG values was
calculated. Across all muscles, the average value of MAE was 8.43%
(SD = 2.87%) of the normalized EMG data. The larger absolute errors occurred
in the left side of the trunk, which exhibited higher levels of muscular activity.
Overall, the developed model was capable of estimating the normalized EMG
values with average value of the mean absolute differences of 6.4%. It was
hypothesized that model performance could be improved by increasing the
number of inputs, including additional task variables as well as the subjects’
characteristics.

1. Introduction
Many real-world problems are so complex that they allow only for imprecise
description of the relationships between system eclements and system behaviours
(Karwowski et al. 1999a). For this reason, many of the current intelligent
engineering design approaches are heuristic. According to Wang and Mendel
(1992), this kind of approach has two weak points: 1) it is problem dependent, i.e., a
method may work well for one problem but may not be suited for another problem;
and 2) there is no common framework for modelling and representing different
aspects of control, which makes the analyses difficult. Furthermore, as the system
structures become larger and more complex, they also become nonlinear in nature.
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Consequently, it is not easy to understand the relationships between the task
conditions and human performance.

The general modelling method for the complex human-machine system can be
developed by incorporating some standard measures with the additional human
knowledge defined specifically for a given problem. Evaluation of body stresses in
manual material handling (MMH) activities is such a complex problem that requires
combination of several approaches (Karwowski and Ayoub 1984, Karwowski et al.
1999b, Karwowski and Rodrick 2001). The biomechanical approach is one of the
analytical approaches for investigating the relationships between human responses
and the lifting task environment. The low back biomechanical models attempt to
estimate the loads on the lumbar spine under different (occupational) task
conditions. Figure 1 show how the human body is viewed under the low back
biomechanical model, and what variables are needed for building such models. These
variables include both the human and workplace characteristics variables. Trunk
motion description includes such factors as trunk flexion angle, angular velocity, etc.
Electromyography (EMG) has been also widely for estimating muscular activities
due to lifting tasks.

1.1. Biomechanical modelling of manual lifting tasks

Biomechanical models employ variety of the human- and environment-related
variables. The need for utilizing such variables is motivated by different types of
inquires (Chaffin 1988). First is the matter of correct interpretation of complex data
now available from the very sophisticated bio-instrumentation. For instance, if one
accepts that low-back pain originates at mechanical disruption of normal tissue
function, then the electromyography (EMG) data and other types of data can be
combined into biomechanical models in order to interpret the meaning of each
measurement. A second motivation for building biomechanical models is practi-
cality. Under a new work situation it may be necessary to simulate manual activity in
order to estimate whether a given lifting task would be safe.

The biomechanical models have many practical limitations:

1. the number of control variables considered at one time in a model are
restricted due to time constraints,

2. many proceeding steps are needed to develop the relationship between
control variables and the EMG activities (mathematical functions) which
might be nonlinear,

3. most estimation models are seldom capable of accounting for individual
variability because mathematical models use objective functions to optimize
the spine loading in the most efficient manner (Marras and Sommerich 1991).

Compared to typical estimation models which produce average muscle loading, the
variability in the spine loading is meaningful for identification of the peak loading.
This allows for more accurate assessment of the risk injury risk attributable to
workplace design. The individual variability could be accounted for by evaluating
the spine loading at points in normalized time throughout the exertion in the three-
dimensional motion model (Marras and Sommerich 1991).

Muscle activity featuring the internal behaviour of the body is usually described
with EMG data. Thus, most biomechanical models heavily rely on the EMG inputs
to ‘drive’ them (Mirka et al. 1996). However, it is often impractical to collect EMG
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Figure 1. A typical low-back model and its elements.

activity in industry due to hostility (such as presence of the magnetic field) of work
environments. Laboratory experiments are, therefore, performed under precisely
controlled conditions to measure muscle activity during the specific trunk motions
(Marras and Sommerich 1991).

The manual lifting activities are influenced by multiple work environmental
factors. The environment faced by the human is so complex that no adequate
mathematical model can be developed using traditional design methods. The human
expert can provide certain amount of information for modelling the workplace. On
the other hand, the numerical input-output EMG data are measured under
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controlled conditions. Therefore, we can have two kinds of information for
evaluating manual lifting tasks: 1) numerical information of the EMG data obtained
from the experiment (i.e., laboratory-based measurements), and 2) system behaviour
information (described with linguistic terms) obtained from the human observers.
The human expert knowledge associated with the risk factors of LBDs can be
represented as a set of IF-THEN rules. These rules state the levels of responses
(outputs) function of certain input conditions. They are based on the subjective
perception of the environment. The sampled input-output EMG data pairs are
numerical data that give the specific values of inputs and the corresponding outputs
for the given lifting tasks. In this study, a proposed EMG estimation model design is
based on combining these two types of information.

1.2. Fuzzy modelling
Fuzzy methodology (Zadeh, 1965, 1973, 1975, 1978, Zimmermann 1978, Karwowski
and Mital 1986, Karwowski 1992, Karwowski et al. 1999a) has been effective as an
approach which allows utilization of vague linguistic information obtained from the
human experts, whereas artificial neural networks are suited for numerical data
pair’s analysis. The neuro-fuzzy approach is an alternative methodology, compared
to the traditional systems modelling approaches. Fuzzy systems can represent
imprecise human knowledge, while neural networks have an ability of generalizing
nonlinear properties of the data. The rationale for using both technologies is that
both are free of numerical model estimators. They do not require mathematical
functions in modelling of complex and presumably nonlinear systems, but also show
good performance when the model is made. They can also share their respective
abilities by working efficiently in uncertain, imprecise, and noisy environments. The
effects of such integration can be found in many other engineering applications
(Sugeno and Kang 1988, Kosko 1992, Kasabov 1996).

Fuzzy and neural systems can be applied to treat the numerical EMG data (figure
2) and interact with the low back biomechanical models. There are two possible
neuro-fuzzy approaches. First, a neuro-fuzzy model for estimating the EMG activity
can be a basis for the EMG-based models for estimating the biomechanical stresses
on the spine. Second, a neuro-fuzzy model can be directly used to estimate the
compressive and shear forces on the spine, without the EMG data. This study is
related to the first approach. Since the information about system behaviour is based
on human judgment, the available knowledge can be described with imprecise
linguistic terms such as {low, medium, high}. The basic premise of this research is to
build a neuro-fuzzy model for estimating the EMG values of trunk muscles due to
manual lifting tasks. Fuzzy variables are used to capture the knowledge, while fuzzy
EMG-estimation rules are generated by the neural network, based on numerical
EMG data.

2. Objectives

Low back biomechanical models attempt to estimate loads on the lumbar spine
under different occupational conditions in order to allow for estimating allowable
loads held in various postures, the least stressful configuration of workplaces, etc.
These models can help to rationally interpolate and extrapolate musculoskeletal
capacity data from different sources to provide specific design guides. When applied
at the design stage, this approach appears to help prevent musculoskeletal injury and
reduce organizational costs (Chaffin and Andersson 1991).
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Figure 2. Applications of neuro-fuzzy expert approach in biomechanical modelling.

The EMG data are often needed as inputs for the ‘EMG-driven’ and
‘optimization-based’ biomechanics models. However, such measurements are often
impractical to perform in real industrial environments. The present study aims to
develop a hybrid neuro-fuzzy system for estimating the EMG magnitude of 10 trunk
muscles due to lifting tasks, based on two physical variables (trunk velocity and
trunk moment) as model inputs. The proposed neuro-fuzzy model is a fuzzy logic-
based model which uses a neural network as a tool to generate the fuzzy rule bases. It
was hypothesized that such a model can lead to acceptable performance in
estimating the EMG activity, based on the synergistic effects of combining a fuzzy

system and a neural network.
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3. Biomechanical modelling
3.1. Low back models
Electromyography (EMG) has been employed as a measure of muscle tension for
estimating the amount of muscle activity and evaluating system performance.
Generally, four types of information can be provided through the EMG data
(Marras 1990):

1. knowledge about whether the muscle is in use (on/off) during an exertion;

2. a relative activity level, indicating muscle effort, can be determined by
comparing the exertion level of the processed signal under various conditions;

3. quantitative information regarding force generation of the muscle under
static and constant velocity of the muscle; and

4. muscle fatigue as indicated by the shift of frequency spectrum to lower levels
(Basmajian and DeLuca 1985).

In general, the relationships between the EMG activity of muscles and several task-
related factors appear to be monotonic. However, this relationship is non-linear
under many circumstances. Thus, clear understanding of the EMG signals in MMH-
related studies plays an important role for guiding the reduction of body loading in
heavy work situations. Quantitative evaluation is available throughout the analysis
of EMG activity patterns. Based on their functional roles and measurability,
typically five primary human muscles are used in the biomechanical models: erector
spinae (ES), latissimus dorsi (LD), rectus abdominis (RA), external obliques (EO),
and internal obliques (IO) (see figure 3).

The EMG data used in biomechanical models can be used to validate the
optimization-based models (Bean ef al. 1988, Schultz and Andersson 1981), or as input
to the EMG-driven models (Marras and Sommerich 1991, McGill and Norman 1986).
For model validation, the measured EMG data are compared with the estimated EMG
data obtained from the optimization-based model. The external moment is compared
with the internal moment obtained from the EMG-driven model. The model uses the
measured EMG data as input to produce loads on the lumbar spine.
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Figure 3. Trunk muscles used in the study.
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3.2. Optimization-based models

The optimization-based models are another class of models that permit evaluation of
human performance in industrial tasks. These models assume that muscle forces are
exerted in the way that can minimize the risk level, based on spinal compression and
sum of muscle forces on the spine. Such models are usually validated by comparing
the estimated EMG data with the measured EMG data obtained from experiments
or other sources. Therefore, the possessions of accurate normalized EMG (NEMG)
data are necessary to evaluate the accuracy of any estimation model. Although the
requirement for the EMG data can be satisfied at least to some extent under careful
experimental control, the acquisition of pure EMG data can be an additional burden
for system designers (Aaras et al. 1996).

The optimization-based models have some limitations in keeping model
performance consistent. For example, these models could not find solutions for
the particular postures when the maximum muscle force exceeds the defined ranges.
Also, most optimization models cannot estimate co-contraction of musculature,
while significant co-contraction has been demonstrated experimentally in many
EMG studies (Lavender et al. 1991, Lavender et al. 1992). Hughes (1995) tested four
different optimization-based models for estimating torso muscle force in order to
investigate the practical effect of optimization models. The objective was to
determine the degree to which the choice of model formulation affects spinal
compression force estimates when analysing industrial tasks. The results showed that
the choice of low-back model formulation can significantly affect the magnitude of
spinal compression force estimations. For example, the greatest difference between
model estimations of compression force was 3625N for the task selected. This
difference could be due to the way in which the four models penalized large muscle
stresses. In some cases, there was no solution for any posture selected because the
100 N/cm? bound of model constraint was too restrictive, and some of the computed
muscle stresses exceeded physiological limits. In another example, the Minimum
Compression model could not find solutions for the selected postures when a muscle
stress bound of 100 N/cm? was used. Hughes (1995) also found none of the four
models could be used to estimate contraction of the extensor musculature.

3.2. EMG-driven biomechanical models

The EMG-driven biomechanical models, using the EMG data as inputs, have been
known to provide better performance (e.g., with respect to accuracy and consistency)
than that of optimization-based models in many laboratory studies of manual
handling tasks. The EMG-driven models basically assume that trunk moment is
directly related to spine loading. So the equilibrium between internal and external
moments is pursued for balancing the body posture. The internal forces which act to
resist the external moments are created by the muscle forces, while the external forces
are created by two task effects: the weights and moment of the object lifted; and the
weight of the body segments and the distance from the spine. Based on these
assumptions, the validation of the model can be tested by comparing directly the
measured joint moment with the joint moment estimated by the model.

The EMG-driven models differ from the optimization-based models in that the
EMG-driven models can account for individual variability. The variability of spine
loading has the useful meaning of identifying peak spine loading due to the
movement that allows more accurate assessment of the risk of injury attributable to
workplace design. Most estimation models are seldom capable of accounting for
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individual variability because they use objective functions that aim to optimize spine
loading in the most efficient manner.

Marras and Sommerich (1991) developed an EMG-driven dynamic three-
dimensional motion model to examine trunk muscle activity patterns and to
quantify biomechanical stresses on the spine during the isokinetic trunk lifting
exertion. This model included three types of model inputs: 1) subject characteristics
(such as subject anthropometry), 2) EMG signals (such as EMG amplitude), and 3)
trunk kinematics and kinetics (such as trunk flexion angle, angular velocity and
torque). In addition, individual variability in the amount of loads on the spine
could be observed in a way of evaluating the spine loading at points in normalized
time throughout the exertion under symmetric and asymmetric constant velocity
lifting conditions. However, the EMG-driven models are not general-purpose
models. Rather, they are intended for the use under laboratory conditions, and to
interface with common laboratory instruments (EMG, dynamometers, etc.) which
can assess the influence of motion-related biomechanical factors. In this respect,
Mirka et al. (1996) developed a simulation-based model which can generate the
EMG signals, given a set of environmental conditions such as weight, moment, and
trunk posture and trunk dynamics. The shapes of best fit distributions were
developed with multiple runs of the simulation, and then the estimated EMG
values were generated for bending and lifting activities by the multivariate Johnson
distribution method. The model had the capability of generating muscle activities
during bending and lifting activities.

3.3. Risk factors associated with LBDs in lifting tasks

Both epidemiologic and biomechanical studies have indicated that there is a link
between the risk of the LBDs and occupational conditions. Specifically, the MMH is
associated with greater risk of the LBDs. Marras (1992) documented workplace and
individual characteristics to be highly related to LBDs risk from over 400 industrial
lifting jobs in 48 varied industries. These factors included lifting frequency, load
moment, trunk lateral velocity, trunk twisting velocity and the trunk sagittal angle.
A lumbar motion monitor was employed in his study to assess the contribution of
three-dimensional dynamic trunk motions to the risk of LBD during occupational
lifting in industry.

One of the most important factors affecting trunk moment is the external load
being lifted. For example, a greater weight produces a greater trunk moment, and in
turn influences the compressive force on the spine. Marras and Mirka (1992) found
that all muscles increased their activities when trunk moment increased. As trunk
moment increases, the agonist and antagonist muscles increase their activities
dramatically. Thus, additional spinal loading is expected due to the mechanical
disadvantage in antagonist muscles when these muscles are activated to counter-
balance the external moments. Trunk velocity is another major factor that modifies
activity of the trunk muscles. Higher the trunk velocity results in greater muscle
activities needed to maintain the same level of torque production by the trunk. This
indicates there is an internal musculoskeletal cost associated with trunk motion
(Marras 1992).

3.4. Relationships between EMG and task factors
The EMG data includes useful information which describes the synergistic effects of
muscle activities on joint loadings due to lifting task design. Accurate description of
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the relationships between the EMG data and task factors (workplace and human
characteristics) can help to logically trace possible causes and effects of excessive
biomechanical stresses. However, the causal relations between EMG data and lifting
task factors are not easily formulated with the mathematical forms because they are
often too complex to define. For example, it is known that human muscles behave
indeterminately (Basmajian and DeLuca, 1985). An infinite number of sets of
muscles are organically recruited to generate the required reaction moments during a
given exertion and posture of the body. The antagonistic muscles also contribute to
the exertion for the required reaction moment. Such indeterminate characteristics of
muscle recruitment cause the relationships between task factors and body stresses to
be nonlinear and uncertain.

Most EMG estimation models take a deterministic approach to estimating
muscular forces, and muscle activation levels are expressed as one constant value.
These data are also fed into the biomechanical models for estimating spinal loading
due to lifting task. Therefore, the EMG data largely affect the estimation of spinal
loads, such as compressive force and shear force. Furthermore, there is always
uncertainty that arises from the inability to perform adequate measurements. The
EMG data may be physically affected by the measurement itself regardless of the
task characteristics. Although some factors can be controlled (to some extent) with a
precise setup of instrumentation and careful selection of electrode location, it may be
hard to guarantee the acceptable level of accuracy of the measured EMG signals,
particularly in field environments. Furthermore, the error sources tend to be
multiplicative in varying their effects on the EMG data due to their interaction
(Marras 1990).

The specific characteristics of a biomechanical model itself may be another
uncertainty source. Different estimation models have to be used for the analysis
of different types of body motions (e.g., static and dynamic motion). For
example, the static models can overestimate the population’s capabilities when
fast movements are required with the combination of maximum strength
exertions, and will also overestimate when older populations are employed. Most
optimization-based models may underestimate the muscle-induced compression
and shear forces on the spinal motion segments by as much as 30%, especially
during sudden (i.e., jerking) motions, or lateral, asymmetric exertions (Chaffin
1997). In this sense, most biomechanical models are neither complete nor accurate
for all types of exertions that may occur during manual lifting. In this study, two
types of information sources were combined for evaluating lifting tasks: numerical
information of the EMG data measured with precise control, and human expert
evaluations which can provide a certain amount of information related to overall
workplace characteristics.

4. Fuzzy and neural modelling

4.1. Fuzzy methodology

Fuzzy logic can be used to model human imprecise reasoning and control complex
and ill-defined processes without precise knowledge of their underlying dynamics
(Zadeh, 1965, 1973, 1978; Zimmermann, 1985; Karwowski and Mital, 1986; Klir and
Yuan, 1995; Ross 1995). In general, a fuzzy logic controller consists of three
modules: fuzzification/defuzzification module, fuzzy inference engine, and fuzzy rule
base allowing to process uncertainty in human thinking (figure 4). The following are
the main phases of a fuzzy system development (Kasabov 1996):
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When evaluating MMH activities, human experts can observe the lifting
workplaces, and then document the information about the relationships between
task variables and system outputs based on their judgments (Karwowski and Ayoub
1984, Karwowski et al. 1995, Karwowski et al. 1999b). Such information can be
expressed with imprecise linguistic forms such as ‘low’, ‘medium’ and ‘high’. In a
fuzzy system, the subjective judgments can be formulated through fuzzification
module which transforms them into appropriate fuzzy linguistic variables
characterized by membership functions in a specified universe of discourse.

A fuzzy inference engine is a decision-making logic based on fuzzy rules that
determine fuzzy outputs corresponding to fuzzified inputs. Fuzzy inference engine
allows for simulation of the human decision making procedures to evaluate the
fuzzified variables. The evaluation of fuzzy rules fired depends on the fuzzy
implication in fuzzy logic. For example, assume that two task variables are selected
to analyse a lifting task, and the EMG values are outputs in the corresponding
workplace. The inputs are: M (trunk moment imposed on L5/S1 level of the human
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spine) and V (lateral bending velocity of upper trunk). An output N is the
normalized EMG of muscle activity. In this example, fuzzy rules have the form
shown below:

Ri: If M is A; and V is By, then N is Cy,
R,: If M is A, and V is B,, then N is C,.

Fuzzy implication, ‘and’ operator, in the rule expression generates common parts for
the linguistic variables A; and B;, such as ‘low’, ‘medium’, and ‘high’. Then the firing
strengths of the first and second rules are expressed in terms of the degrees of partial
match between the user-supplied data and the data in the fuzzy rule base. Once all of
the fuzzy output sets have been computed, they are combined through their sum or
union together to produce the combined fuzzy output set.

4.2. Neural network systems

A neural network, also called a connectionist system, is a biologically inspired
computational model that consists of processing elements (neurons) and connections
between them, as well as training and recalling algorithms (Kasabo 1996). Neural
networks can be used for rapid pattern recognition, complex data classification, and
learning from complex numerical data.

In general, a neural network consists of three basic entities: 1) a set of neurons, 2)
pattern of connectivity, and 3) learning rules. Neurons can be organized into several
layers, called hidden layers, depending on the network architecture used that
function as stations able to send and receive signals from the outside environment or
other neurons in the network. Network can be completely operated when neurons
are linked with each other, partially or fully, depending on the network topology.
The most attractive characteristic of neural network is its ability to learn, which
makes it possible modification of system behaviour in response to the environment,
and involves a process of changing the pattern and strength of connectivity among
neurons.

The efficient and effective replication of the human’s ability to classify patterns
allows the neural network to solve real world problems inherent to complex and
nonlinear systems (Wasserman 1993). Neural networks have been proven effective
for performing variety of tasks, including:

1. pattern mapping, one can input a written text to receive a spoken word;
pattern completion, in which one can input a partially obscured object to
recall a stored complete pattern;

3. pattern classification, by which one can sort different patterns into categories;
and

4. optimization, in which one can efficiently solve a complicated combinatorial
problem (Neuralware 1989, Chu 1993).

The neural network self-organizes the presented data to discover common
properties. Most general learning schemes are either supervised or unsupervised.
Supervised learning incorporates desired outputs and information regarding when to
turn off the learning, and how long and how often to present each data set for
training. Unsupervised learning, which relies only upon local information and
internal control to derive the results, is considered to be psychologically more
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plausible. This may be because humans tend to learn more about nature and life
through their own experience, rather than by listening to a teacher (Kasabov 1996).
One of the network learning algorithms is differential competitive learning (DCL)
that provides a form of unsupervised adaptive vector quantization (Kong and Kosko
1991). The DCL systems learn only if the competing neurons change their
competitive signal.

4.4. Applications of Neural Networks in Biomechanics

A few studies have utilized the neural networks in the biomechanics area. Nussbaum
and Chaffin (1996) developed a neural network model to evaluate the capability of
generating estimations of muscular activity averaged across subjects performing
moderate levels of static exertions. Three sets of data from other studies containing
EMG patterns were employed for the evaluation in the neural network consisting of
three layers. With multiple evaluations, neural networks estimated muscle activity
within 3% accuracy across a range of experiments and a high degree of consistency
in the averaged muscle activity measured in several different experiments.

In the medical application of the EMG pattern analysis (Pattichis and Schizas
1995), neural network models were combined with the parametric pattern
recognition algorithm to provide an integrated system for the diagnosis of
neuromuscular disorders. Parametric pattern recognition algorithm automatically
extracts motor unit action potential (MUAP) feature. In a routine clinical
application of EMG, the MUAP morphology is subjectively evaluated by the
examiner. Such a manual analysis is time-consuming and introduces variable sources
of error in the subjective measurement of MUAP parameters. The neural networks
approach was used for automated classification of the EMG features recorded from
normal individuals and patients suffering from neuromuscular diseases. From the
medical standpoint, this study showed great potential for solving the nonlinearity
problems by way of eliminating the need to solve difficult nonlinear mathematical
models. Instead, the networks learned from experience (examples) to optimize
performance despite of the system nonlinearity characteristics.

4.5. Integration of fuzzy systems and neural networks

The purpose of integrating the fuzzy logic with the neural network approach is to
take advantage of their synergistic effects based on the features of both technologies
in a particular domain problem. Neural networks, with their highly interconnected
systems, pertain to trainable dynamic structures whose learning, noise-tolerance,
and, generalization abilities grow organically out of their connectionist structures
(Lin and Lee 1996). This dynamic structure works well for the low-level data set
obtained from both the linear or nonlinear systems, and produce highly reliable
results. Fuzzy logic provides a way to handle the linguistic statements in order to
model complex systems. The ability of representing behaviour inherent to imprecise,
inconsistent and ill-defined systems helps one to visually explain system functions
using the linguistic structures (variables, e.g., low, medium, high, etc.) that are used
to describe the state of objects and processes confronting human.

In neural network systems, the facilitation of structured knowledge manipulation
provides the means for reducing time necessary to obtain the trained network, and
for improving its estimation accuracy. In fuzzy systems, the fine tuning of a fuzzy
logic controller can be simplified by the use of learning ability and generalization
capability of the neural network that systematically extracts fuzzy logic rules from
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the numerical training data, and tunes fuzzy membership function of the input and
output variables (Huang et al. 1996). Merging of these two technologies can be
accomplished in three ways (Lin and Lee 1996):

1. neuro-fuzzy systems (NFS): use of neural networks as tools in fuzzy models;
fuzzy-neural networks (FNN): fuzzification of the conventional neural
network models; and

3. hybrid fuzzy-neural systems (HFNS): incorporation of the fuzzy logic
technology and neural network into a hybrid system.

Since the neuro-fuzzy systems (NFS) are inherently fuzzy logic-based systems, neural
networks can help in augmenting numerical processing by extracting membership
functions and generating fuzzy rules throughout the input-output mapping. The
fuzzy neural networks (FNN) are based on the neural networks, and still retain the
basic functions and structure of neural networks. In a hybrid fuzzy-neural system
(HFNS), both fuzzy logic techniques and neural networks are utilized separately to
establish two de-coupled subsystems that perform their own tasks in serving different
functions in the combined system.

4.6. Neural network generating fuzzy rules from numerical data

Fuzzy rules play an important role in a fuzzy system and the associated application
systems. They are generally developed by domain experts by observing system
behaviour. However, the tuning of such fuzzy rules and membership functions
which, is a critical burden of fuzzy models, can be improved by the adjustment of
membership function and fuzzy rules based on the model performance. The
membership functions for the fuzzy variables can also be derived from appropriate
techniques, based on the control actions observed. One of the logical fuzzy rule
generation methods is the vector quantization algorithm that utilizes the mapping
capability of neural networks. This method finds and allocates quantization vectors
of the training data to fuzzy grids on the partitioned input-output product space, and
then determines the weight of each fuzzy grid according to the number of
quantization vectors falling into it (Kosko 1992). The vector quantization algorithm
also includes the differential competitive learning (DCL) rule that combines
competitive and differential Hebbian learning.

In order to generate the fuzzy logic rules from numerical data, the DCL method
proceeds along two phases for the pattern classification problem: 1) fuzzy
partitioning of the input space, and 2) identification of a fuzzy logic rule for each
fuzzy subspace. This method assumes that proper fuzzy partitions of input and
output spaces and the associated membership functions are given beforehand. A
geometric procedure used to extract the fuzzy logic rules adaptively clusters training
samples in the input-output product space of a fuzzy system. Each cluster formed in
the input-output product space corresponds to one potential fuzzy logic rule. For
instance, suppose n fuzzy subsets {A;, A,, A,} quantize the input universe of
discourse X, and the p fuzzy subsets {B;, B,, Bp} quantize the output universe of
discourse Y. So, fuzzy rules exist in the fuzzy Cartesian product A x B where sets
{Aj} and {B;} define A x B fuzzy grids F;; in the input-output product space X x Y.
The fuzzy rules are identified if any fuzzy grids are satisfied with criterion such as the
threshold (the required number) of training samples in the grids. The fuzzy rules (F)
to be extracted are in the form of ‘If x is A, then y is B, where x € X and y € Y.
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The training data (provided externally) are fed into a differential competitive
learning (DCL) algorithm in order to estimate at most one rule per fuzzy grid
column: only the highest-weight fuzzy grid per column is picked. If two fuzzy grids
have equally high weights, either fuzzy rule can be picked based on the parameter
setting of users. At the training stage, the DCL method initializes the n nodes of the
network either by spacing the nodes according to a user-defined method in the input-
output space, or by using the first n data vectors, where n is a number determined by
the number of membership functions in the fuzzy system. The remaining data vectors
are then compared with the nodes of the network.

One feature of the DCL algorithm is that it is sensitive to the data used to create
the initial states of nodes in a network whose resulting rules are not always
guaranteed to match the relationships between the input-output set exactly.
However, they will at least provide an initial rule base that may then be refined
further. The refinement can be conducted based on the human expert knowledge
obtained from the observation of the given workplace. Figure 5 illustrates the rule
generation process for simple one input and one output system with three
membership functions predefined on each variable, respectively. In this figure, all
training data is distributed in a 3x3 fuzzy matrix, where n = 3 input subspaces and
p = 3 output subspaces.

In this study, the initial fuzzy rules are generated by pre-evaluated neural
network with the DCL algorithm. The DCL network can be controlled by the
threshold parameter per fuzzy grid. For example, in the trained network, if the
threshold is set to 3, then the cells which contain more than 3 data will be fired. In
figure 5, only one rule, ‘If INPUT is Medium, Then OUTPUT is Medium,” would be
produced, since only Cell 5 contains three nodes of the network. It should be noted
that the number of generated fuzzy rules depends on the value set for the threshold
indicating the required number of the data presented in a cell.

5. Methods and procedures

5.1. Model structure

The Fuzzy Logic-based EMG Estimation Model aims to estimate the normalized
EMG (NEMG) signals of 10 trunk muscles, based on two physical factors: trunk
moment and trunk velocity as model inputs (figure 6). Trunk moment is the product
of the force imposed on the L5/S1 level of the human spine and the corresponding
moment arm. Trunk velocity was defined as the lateral bending velocity of the upper
trunk. The authors provided the subjective assessment of task variables in terms of
linguistic values as inputs. The fuzzy rules refined in model development were used to
estimate the normalized EMG activities of 10 muscles under specific lifting task
conditions. The complete model allows one to visually analyse how the changes of
contribution of task variables impact the NEMG magnitude of 10 trunk muscles.
The implementation of this model aims to demonstrate usability of the fuzzy
approach for estimating the EMG data, or ultimately the biomechanical stresses,
such as compression and shear forces imposed on the lumbar spine when lifting
loads.

The EMG data were fed into the neural network in order to generate the initial
fuzzy rules. The performance of neural network is determined by a control
parameter of the network (i.e., threshold) which was set to 3 in this study, because
this criterion allowed neural networks to generate maximum number of rules. That
is, every input-output mapping has each fuzzy rule to estimate EMG magnitude.
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Figure 5. Fuzzy rule generation process for simple one input and one output system: cells

indicate product space that can be clustered with differential competitive learning
algorithm.

Then, the initial rules were verified (modified) based on the authors’ knowledge of
the lifting tasks and associated EMG activities. It should be stressed that this was
done only at the learning stage in order to correct the initial rules generated by the
network.

5.2. EMG data acquisition

The real EMG data was collected at the Ohio State University (OSU) Biomechanics
Lab (Marras and Sommerich 1991, Marras and Granata 1997). In summary, in the
OSU experiments, 12 subjects were asked to exert two types of lateral upper trunk
moments (30 ft-1b and 60 ft-1b), at three (sagittal) dynamic trunk velocities (15, 30, 45
degrees/second). For example, a subject was asked to laterally bend at 30 degrees/
second of trunk velocity from 15 degree to the left to 15 degree to the right.
Demographics of the subject population are provided elsewhere (Marras and
Granata 1997). The EMG signals were measured for five pairs of muscles in the
experiment: right/left latissimus dorsi (RLD and LLD), right/left erector spinae
(RES and LES), right/left rectus abdominus (RRA and LRA), right/left external
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Figure 6. Overall model structure.

obliques (REO and LEO), and right/left internal obliques (RIO and LIO). All the
EMG data were normalized by myoelectric maxima recorded from each muscle
during a series of six static calibration exertions for the purpose of magnitude
comparison and data uncertainty reduction.

Normalized EMG = (EMG /| EMG,,.,) x 100

where normalized EMG (NEMG) indicates the relative muscle magnitude ranging
from 0% to 100%. EMG is the recorded value at a particular time, and EMG,,,y is
the maximum EMG value recorded for the particular muscle at the particular angle of
orientation. The NEMG data points per muscle were plotted as a function of
normalized time. A peak NEMG value (maximum value) was chosen and used as the
‘representative NEMG’ (RNEMG) of muscle for the particular task condition. Data
for eight subjects (total of 480 RNEMG data sets) were used to develop the estimation
model, i.e., to build the respective membership functions, and to train neural
networks for producing the appropriate fuzzy rule bases. Another data set for four
subjects (total of 240 RNEMG data sets) was used to validate the developed model.

5.3. Fuzzification of the input-output space

Fuzzification is defined as a mapping from an observed input space to labels of fuzzy
sets in a specified universe of discourse. The NUFEMG has two inputs, trunk
moment and trunk velocity. Trunk moment was fuzzified into two fuzzy linguistic
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variables: 1) ‘About30’ degrees and 2) ‘About60’ degrees, since the physical setting
for trunk moments were at 30 ft-lb and 60 ft-lb when the EMG signals were
measured. Trunk velocity was fuzzified into three fuzzy linguistic variables: 1)
‘Aboutls’, 2) ‘About30’, and 3) ‘About60’ degrees, since the physical settings for
trunk velocity were at 15, 30, and 60 degrees/second when the EMG signals were
measured. The linguistic term of ‘About30’ in trunk moment variable represents the
moment value of about 30 ft-Ib.

Although different system designers can assign different categories of member-
ship functions for task variables when the experimental settings are unknown, the
system designer in this study had the information about the true EMG signals.
Therefore, the membership functions of the trunk moment variable were defined to
have the maximum degree of 1.0 at moments equal to 30ft x Ibs and 60 ft-1b. The
membership functions of trunk velocity were defined to have their maximum
membership value of 1.0 at 15, 30, 45 degree/second. In order to assign membership
functions for the ten muscles’ EMG activity as model outputs, the 480 RNEMG
data points were plotted in two dimensional space that consist of the combination of
two task conditions along the X axis, and the RNEMG magnitude along the Y axis.
Then, the triangular-shape membership functions were assigned in such a manner
where the whole range of the data was covered with the adequate number (and
width) of these membership functions.

5.4. Neural network generating fuzzy rule bases

Forty eight data per muscle (total of 480 data points) were fed into the pre-evaluated
neural network for the purpose of training and generating the fuzzy rules for a fuzzy
system (Togai Infralogic Inc. 1993). The neural network includes the differential
competitive learning (DCL) algorithm for the network learning which generates at
most one rule per fuzzy grid according to the control parameter. The neural network
developed in this research is a general two-layer feed-forward unsupervised network
(Zurada 1992) trained with the DCL algorithm (figure 7). Two processing elements
in an input layer receive the information about trunk moment and trunk velocity.
The processing elements in an output layer consist of the membership functions for
the muscles. The number of processing elements in an output layer is dependent on
the number of membership functions for the particular muscle.

The number of fuzzy rules depends not only on the number of input and output
membership functions, but also on the control parameter provided in the neural
network (i.e., the level of threshold to space the initial quantization vectors). The
control parameter was set up to three levels of threshold that allows for generation of
fuzzy rules at all possible combinations of membership functions of two input
variables. Therefore, at least three data points were needed to initiate a cell which
generates a fuzzy rule. Since the DCL learning method adaptively moves vectors to
pattern-class centroids, the generated fuzzy rules could refer to the centroid value of
the applied data presumably believed to be the same data group.

A total of 60 fuzzy rules were generated by the neural network for all trunk
muscles. These rules were also verified with the human expert knowledge obtained
from the graphical data analysis. Among the generated rules, eight fuzzy rules were
further modified by the human expert. These are two rules for the left latissimus
dorsi (LLD) muscles, three rules for the left external obliques (LEO) muscles, and
three rules for the left internal obliques (LIO) muscles. The set of fuzzy rules utilized
in this model is shown in table 1.
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5.5. The inference mechanism
In order to illustrate the inference mechanism applied in the system, assume the
following fuzzy rule is activated:

If Trunk Moment is ‘About30’ and Trunk Velocity is ‘Aboutl5’, then NEMG of
RLD is ‘About_10.’

This fuzzy rule is characterized by a fuzzy IF-THEN statement in which the
preconditions and consequents involve the linguistic variables. The two precondi-
tions are evaluated by the fuzzy implication process (AND operator), while the two
fuzzy linguistic variables associated with input task variables are fired to induce the

Trunk

Moment '

. Fuzzy

Trunk
Velocity ‘

OUTPUT LAYER
(Fuzzy Variables)

INPUT LAYER
(Task Conditions)

Figure 7. Structure of the Neural Network Used for Generation of Fuzzy Rules.

Table 1. The fuzzy rules used in model development.

RLD Trunk Velocity
Aboutl5 About30 About45
Trunk About30 About_10 About_15 About_10
Moment About60 About_15 About_15 About_15
LLD Trunk Velocity
Aboutl5 About30 About45
Trunk About30 About_55 About_50 About_55
Moment About60 About_85 About_90 About_90
(About_65) (About_85)
RES Trunk Velocity
Aboutl5 About30 About45
Trunk About30 About_5 About_10 About_10
Moment About60 About_15 About_15 About_15
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expected EMG activity. This conjunction rule of fuzzy implication is analogous to
the Boolean logic ‘AND’ operator, thus it takes the minimum of the fuzzy
membership values of these conditions to produce a fuzzy outcome (Klir and Yuan
1995).

The ‘AND’ fuzzy operator evaluates the fuzzy relation between two fuzzy
predicates, based on the firing strength of the rule:

.o = fm (About30) A fv (Aboutl?)

where fy (About30) and fv (Aboutl5) indicate the degrees of membership function
at the given input condition, ‘About30’ of trunk moment and ‘Aboutl5’ of trunk
velocity, respectively. The firing strength takes the smaller degree value of the two. It
should be noted that the above outcome is still a fuzzy value, while it has to be
defuzzified into a crisp value defining the muscle activity (a normalized EMG) of
interest. In this study, the Max-dot defuzzification method was used to quantify the
fuzzy outcome. According to this method, the rule that has the higher activation
level will contribute more to the final output.

6. Results and discussion

6.1. Analysis of the raw EMG data

The normalized EMG (NEMG) signals were measured under 30 degrees/second of
trunk velocity and 60 ft-lb of the trunk moment. Owing to the lifting task
characteristics, the left side muscles of trunk were clearly more active than the right
side muscles, and muscular activity increased slightly as the trunk velocity increased.
The 480 RNEMG data sets used for building the NUFEMG were averaged at task
conditions in the combination of task velocity and trunk moment (table 2). These
values are defined as ‘averaged NEMG’ (ANEMG) of muscle for the particular task
condition.

Averaged NEMG = Z( RNEMG ) / number of subjects
At the trunk moment of 30 ft-1b condition, the left internal obliques (LIO) muscles

showed the highest muscle activity of 63.10% ANEMG under 45 degrees/second of
trunk velocity. All right trunk side muscles exerted less than 20% ANEMG regardless

Table 2. Average values of real NEMG signals of 480 data sets used for model development.

Trunk Velocity / Trunk Moment

Muscles 15/30 30/30 45/30 15/60 30/60 45/60
RLD 11.08 10.37 9.24 19.35 18.01 16.39
LLD 59.32 54.02 52.36 82.85 92.42 92.79
RES 7.87 10.46 8.33 13.58 12.55 12.76
LES 42.01 46.57 45.49 56.32 59.98 59.54
RRA 5.97 6.86 6.27 13.05 12.12 13.35
LRA 16 18.06 15.59 34.4 32.46 38.45
REO 6.63 8.33 7.64 14.96 13.75 13.33
LEO 39.38 42.05 41.94 82.62 91.01 90.97
RIO 18.09 13.45 13.81 19.81 16.49 16.11

LIO 57.64 58.66 63.1 83.36 92.68 96.42
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of the level of trunk velocity. At the trunk moment of 60 ft-1b condition, the left
internal obliques (LIO) muscles also showed activation of 96.42% ANEMG
magnitude under 45 degrees/second of trunk velocity, while all the right side muscles
exerted less than 20% ANEMG, regardless of the trunk velocity levels. Similar results
were reported by Marras and Granata study (1997) that describes how spine loading
changes as a function of lateral trunk velocity in a load-supporting task. They found
that activity of the external oblique and internal oblique muscles were significantly
greater than the activities of the erector spinae and rectus abdominus muscles.

6.2. Model validations

The developed model was validated by comparing the estimated ANEMG values
from the model with the representative RNEMG data of four subjects (a total of 240
data points) which were not used in the model development. Since the model
estimate was a continuum in the NUFEMG, the discrete points were taken at the
combinations of task conditions for evaluation purposes.

6.2.1. Mean absolute error (MAE): The absolute errors between 24 evaluation
data sets per muscle and the model estimates for six task conditions were calculated,
and then the absolute errors for each muscle were averaged, resulting in the mean
absolute error (MAE). A value of the MAE indicates the errors between the
representative NEMG (RNEMG) values and the model EMG estimates (ENEMG).

MAE = (£ | RNEMG - ENEMG | ) / number of evaluation data

where ENEMG indicates the value estimated by NUFEMG.

The mean absolute error (MAE) ranges from 4.97% for the right latissimus dorsi
(RLD) to 13.16% for the left rectus abdominus (LRA). Overall, across all muscles,
the average value of MAE was 8.43% (SD = 2.87%) of the normalized EMG data.
The larger MAE occurred for the left erector spinae (LES), left rectus abdominus
(LRA), and left external obliques (LEO) muscles (12.79%, 13.16%, and 13.00%,
respectively). The smaller MAE occurred for the right latissimus dorsi (RLD) and
right rectus abdominus (RRA) muscles (4.97% and 5.12%, respectively). The larger
absolute errors, presumably, occurred in the left side muscles which exhibited the
higher levels of muscular activity.

6.2.2. The average method: In the traditional modelling approaches, the averaged
EMG value is often taken as the representative value for the muscle activity due to a
given lifting task. The real signals are averaged over all subjects, and then put into
the biomechanical model (e.g., EMG-driven model or optimization-based model) to
evaluate spine loads. Hence, it is useful to analyse the differences between the model
estimates provided by the NUFEMG and the average NEMG of real EMG signals.
These differences between the averaged NEMG values (ANEMG) and the model
estimates (ENEMG), defined as mean absolute difference or MAD were calculated.
The MAD was defined as:

MAD = (£ | ANEMG - ENEMG | ) / number of task conditions

where ANEMG indicates the average value of the representative RNEMG values,
estimated NEMG (ENEMG) is the value estimated by NUFEMG.
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The negative sign (—) under the ‘Difference’ column indicates that the averaged
NEMG value (ANEMG) is less than the model estimate (ENEMG). The ANEMG
magnitude of the right erector spinae (RES), right rectus abdominus (RRA), and
right internal obliques (RIO) muscles were overestimated for all (six) task conditions,
while the NUFEMG underestimated the ANEMG magnitude of the left external
obliques (LEO) for all (six) task conditions.

Table 3 shows the mean absolute differences of NEMG values of all the muscles
between average method and the study model.

The larger MAD occurred for the left erector spinae (LES), left rectus abdominus
(LRA), and left external obliques (LEO) muscles (11.59%, 11.31%, and 10.18%,
respectively). The smaller MAD was 2.71% for the right external obliques (REO)
muscles. The ANEMG values for the left side trunk muscles had larger MAD values
compared to right side trunk muscles. It should be noted that a similar tendency was
found in the MAE analysis.

In the analysis of the Pearson product correlation between the averaged EMG
(ANEMG) values and the model estimates (table 4), the r values ranged from 0.16
for the left erector spinae (LES) to 0.99 for the left latissimus dorsi (LLD). The
coefficient of correlation for the left erector spinae was 0.16, and for the left rectus
abdominus was 0.41, with the corresponding mean absolute differences of 11.59%
and 11.31%, respectively. The right internal obliques (RIO) muscles had a coefficient
of correlation value of 0.29, despite comparatively lower MAD of 6.28%.

6.3. Comparison of the EMG model estimation quality with other studies
The estimation quality of NUFEMG was compared with that of a neural network
model (Nussbaum and Chaffin 1996) and optimization models (Schultz et al. 1983,

Table 3. Mean absolute difference (MAD) between averaged NEMG (ANEMG) of real
signals and the model estimates (ENEMG) for all the muscles.

Trunk

Velocity/

Moment RLD LLD RES LES RRA LRA REO LEO RIO LIO
15/30 095 094 177 644 127 779 358 1660 1.05 2.08
15/60 632 376 790 12,51 1.71 1940 205 725 174 6.79
30/30 492 198 452 1514 572 371 214 1737 995 1.55
30/60 2.16 144 579 6.89 6.88 19.51 0.06 831 9.03 6.68
45/30 0.37 385 464 1546 645 057 359 11.05 997 9.70
45/60 7.16 532 7.55 13.12 7.12 1690 483 0.52 594 451
Mean 365 288 536 11.59 486 11.31 271 10.18 628 522
STD 288 1.69 226 398 2.66 836 1.66 631 407 3.12

RLD=Right Latissimus Dorsi
LLD = Left Latissimus Dorsi
RES = Right Erector Spinae
LES = Left Erector Spinae

RRA = Right Rectus Abdominus
LRA = Left Rectus Abdominus
REO = Right External Oblique
LEO = Left External Oblique
RIO = Right Internal Oblique
LIO = Left Internal Oblique.
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Hughes and Chaffin 1985). The comparisons were based on mean absolute difference
and coefficient of determination scores (table 4). The neural network model
developed by Nussbaum and Chaffin (1996) could estimate NEMG values. Model
inputs were the crisp values of four task variables including magnitudes of applied
flexion, extension, right lateral and left lateral moments at L3/L4. The optimization
model developed by Hughes and Chaffin (1987) was used to evaluate the effect of
adding shear constraints in the original Schultz et al. (1983) torso optimization
model. The original Schultz model had no constraint on the motion segment shear
force. The coefficient of determination data used in this study were taken from
Chaffin’s study (1988) for the purpose of comparison. Overall, the MAD of
NUFEMG (6.40%NEMG) was less than that of the neural network model (9.34
%NEMG), but the coefficient of determination of NUFEMG (0.59) showed worse
correlation than that of the neural network model (0.95). However, as shown in table
5, NUFEMG showed better performance in the comparison of coefficient of
determination than the two optimization models (0.47 of Schultz et al. model, 0.57 of
Hughes and Chaffin model). Unfortunately, no statistical comparison of the above
results was possible.

Table 4. Coefficients of Pearson product correlation (r) and mean absolute difference (MAD)
between averaged NEMG of real signals (ANEMG) and the model estimates (ENEMG).

Muscle r MAD MAE
Right Latissimus Dorsi 0.69* 3.65 4.97
Left Latissimus Dorsi 0.99 2.88 6.62
Right Erector Spinae 0.93 5.36 5.45
Left Erector Spinae 0.16* 11.59 12.79
Right Rectus Abdominus 0.71* 4.86 5.12
Left Rectus Abdominus 0.41* 11.31 13.16
Right External Obliques 0.96 2.71 6.50
Left External Obliques 0.98 10.18 13.00
Right Internal Oblique 0.29%* 6.28 6.76
Left Internal Oblique 0.98 5.22 9.94

* p>0.05, N=06 observations. The unit of MAD is % ANEMG.

Table 5. Comparison of results with other studies.

Mean Absolute Difference Coefficient of Determination
(MAD: %NEMG) (R?)
Range Mean S.D N Range Mean S.D N Range
FLHEPM 640 339 10 [2.88~11.59] 0.59 0.39 10 [0.02~0.98]
Neural Network
Model for NEMG
prediction
Nussbaum & 9.34 472 6 [2.16~16.01] 0.95 0.01 6 [0.93~0.96]
Chaffin (1996)
Optimization Models
Schultz et al. Not Available 0.47 0.14 8 [0.25~0.65]
(1983 model)
Hughes & Chaffin Not Available 0.57 0.17 8 [0.30~0.73]

(1987 model)

*N indicates the number of observations (muscles).
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7. Conclusions

The proposed modelling approach combines fuzzy methodology with the neural
network to model estimating the EMG magnitude of 10 trunk muscles based on two
lifting task variables. This approach utilizes linguistic values as model inputs in order
to estimate EMG values, instead of numerical input data as required by other
approaches. Since most of the biomechanical models for estimating loads on the
lumbar spine rely heavily on the EMG inputs to derive the desired model outputs,
the developed neuro-fuzzy- model makes a significant contribution by allowing for
estimating the EMG activity (under limited task conditions), without the actual
measurement of the EMG signals of the considered trunk muscles. In the
development of NUFEMG system, the initial fuzzy rules were generated by the
neural network using the differential competitive learning (DCL) algorithm. The
suitability of these preliminary rules was then validated by the authors. Eight of the
sixty rules were modified for the sole purpose of improving the quality of the
network learning process. These included two rules for the left latissimus dorsi
(LLD) muscles, three rules for the left external obliques (LEO) muscles, and three
rules for the left internal obliques (LIO) muscles. It should be noted that no rule
modification was used during the actual EMG prediction phase that utilized different
set of experimental data. It is believed that the rule modification will not be needed
when the set of input variables is increased beyond two, as the network performance
will be significantly increased. Future studies will focused on fully automated
network learning and estimating of the EMG values based on the larger number of
task variables.

Several advantages of the developed system were found. The lifting task variables
could be represented with the fuzzy membership functions. This provides flexibility
to combine different scales of model variables in order to design the EMG estimation
system. The NEMG signals could be estimated with reasonable accuracy (as average
value of the mean absolute difference of 6.4%) by the model without using complex
mathematical formulations. In model development, it was possible to generate the
initial fuzzy rules using the neural network, but not all of the initial rules were
appropriate (87% correct). The larger mean absolute error (MAE) occurred,
presumably, for the left side (trunk) muscles which exhibited higher levels of the
activity on the lateral bending task used in this study. A comparison of performance
of the EMG-driven biomechanical model with the NUFEMG-based EMG input
and the real EMG data input is needed for future model development and validation.
The present model accuracy is limited by use of only two task variables which were
available for this study (out of five proposed task variables: load moment, trunk
velocity, trunk motion complexity, body control, and work satisfaction). According
to the Marras (1992), a multiple logistic regression model indicated that a
combination of these five trunk motions and workplace factors were related to the
LBD risk. Ultimately, the neuro-fuzzy approach utilizing all five variables to
estimate either the EMG activities or the spinal loading due to dynamic lifting tasks
should be developed. The advantages of the proposed method originate from the fact
that fuzzy logic and neural networks are flexible model-free estimators, as they allow
for modelling a system with a large number of inputs, and require less effort in
adding a new task variable. Future research should focus on developing fully
automated hybrid neuro-fuzzy models for estimating the spinal loads without
involvement of the human expert. Improved model performance could be achieved
by introducing more input task variables and employing a larger subject population.
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