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Abstract

Objective. To review the literature that evaluates the in¯uence of trunk motion on trunk strength and structural loading.

Background. In recent years, trunk dynamics have been identi®ed as potential risk factors for developing low-back disorders.

Consequently, a better understanding of the underlying mechanisms involved in trunk motion is needed.

Methods. This review summarizes the results of 53 studies that have evaluated trunk motion and its impact on several biome-

chanical outcome measures. The biomechanical measures consisted of trunk strength, intra-abdominal pressure, muscle activity,

imposed trunk moments, and spinal loads. Each of these biomechanical measures was discussed in relation to the existing knowledge

within each plane of motion (extension, ¯exion, lateral ¯exion, twisting, and asymmetric extension).

Results. Trunk strength was drastically reduced as dynamic motion increased, and males were impacted more than females. Intra-

abdominal pressure seemed to only be a�ected by trunk dynamics at high levels of force. Trunk moments were found to increase

monotonically with increased trunk motion. Both agonistic and antagonistic muscle activities were greater as dynamic character-

istics increased. As a result, the three-dimensional spinal loads increase signi®cantly for dynamic exertions as compared to isometric

conditions.

Conclusions. Trunk motion has a dramatic a�ect on the muscle coactivity, which seems to be the underlying source for the

decrease strength capability as well as the increased muscle force, IAP, and spinal loads. This review suggests that the ability of the

individual to perform a task ``safely'' might be signi®cantly compromised by the muscle coactivity that accompanies dynamic ex-

ertions. It is also important to consider various workplace and individual factors when attempting to reduce the impact of trunk

motions during dynamic exertions.

Relevance

This review provides insight as to why trunk motions are important risk factors to consider when attempting to control low-back

disorders in the workplace. It is apparent that trunk motion increases the risk of low-back disorders. To better control low-back

disorders in industry, more comprehensive knowledge about the impact of trunk motion is needed. A better understanding of muscle

coactivity may ultimately lead to reducing the risk associated with dynamic exertions. Ó 2000 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Despite mechanization increases in the workplace,
manual material handling has remained a vital compo-
nent of work. As electronic commerce becomes more
prevalent, more frequent lifting (often with lower force)
must occur to process on-line orders. More frequent
lifting often is associated with more rapid movements
[1,2]. Hence, modernization has impacted the work by
making lifts more dynamic. Similarly, in the manufac-

turing environment, better methods and faster machines
have increased output, requiring the worker to keep
pace with the process. Thus, a better understanding of
how trunk dynamics may impact the worker is becoming
more important.

Trunk motion has recently been identi®ed as a
potential risk factor for low-back disorders (LBD).
Three-dimensional trunk velocity has been found to
signi®cantly increase LBD risk [1±3]. Marras and asso-
ciates [1,2] reported odds ratios (comparing ``high risk''
to ``low risk'') for sagittal, lateral, and twisting trunk
velocity on the job between 1.34 and 3.3, 1.04 and 1.73,
and 1.09±1.66, respectively. Norman et al. [3] found an
odd ratio of 1.9 for peak sagittal trunk velocity when
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comparing cases to randomly selected controls. In all
three of these studies, trunk velocity variables were in-
cluded in the multivariate models, indicating that these
motion characteristics may play an important role in the
development of LBD. In addition, high values of com-
bined trunk velocities (e.g. simultaneous lateral ¯exion
and twisting velocities) were found to occur more fre-
quently in high and ``medium'' risk jobs than low risk
jobs [4]. Thus, dynamic motion plays a dominant role in
development of LBD, particularly when the motion
occurs in multiple planes simultaneously. However, our
knowledge of the underlying injury mechanisms associ-
ated with dynamic trunk motion is limited.

1.1. Potential mechanisms leading to LBD

Many factors may contribute to the relationship be-
tween dynamic motion and LBD risk. Two major cat-
egories of such factors include: trunk strength and spine
structural loading. While both factors may potentially
cause LBD, each typically is thought to be associated
with di�erent mechanisms of LBD. LBDs that result
from lack of strength would exceed muscular tolerance
while structural loading LBDs would result from forces
being placed on the spinal structures exceeding the tol-
erance limits. In either case, LBD risk is viewed in a
load-tolerance perspective, regardless of whether it is
muscular or skeletal in nature.

Dynamic strength of the trunk has typically been
measured with sophisticated dynamometers that control
the motion while measuring the force being exerted.
Typically, the motion has been isolated to one plane of
motion (e.g. sagittal, lateral, or twisting). The premise
behind strength capacity is that the closer the required
strength (load) is to the strength capacity (tolerance), the
greater the risk of injury [5,6].

Structural loading factors would include the biome-
chanical factors that contribute to loading on the spinal
structures such as intra-abdominal pressure (IAP),
muscle activity, and the imposed trunk moment, as well
as the actual loads on the structures of the spine. IAP
has traditionally been thought of as a mechanism that
assists in generating an extensor moment, thus, reducing
the loading on the spine [7]. Others have suggested that
IAP assists in maintaining the integrity of the abdominal
muscles [8] and vertebral motion segments [9], as well as
stability of the vertebral column [10,11]. Muscle activity
has traditionally been used as an indirect indicator of
the level of force generated by a particular muscle [12].
However, it should be noted that these measurements
are not an indicator of muscle tension but rather the
degree of muscular activation solicited from the muscle.
In order to estimate the tension in the muscle, the signal
must be adjusted (modulated) to account for the length
and velocity of the muscle [12]. The trunk moment im-
posed on the spine (external load) needs to be o�set by

the trunk muscles (internal load) [13,14]. Thus, as the
imposed trunk moment increases, there would be a
corresponding increase in muscle activity. As a result of
the muscle activity and, potentially, IAP, loads on the
spine are generated in the form of compression, anteri-
or±posterior (A±P) shear (front-to-back shear forces),
and lateral shear (side-to-side shear forces) forces.

This review investigated the impact of trunk dynam-
ics on trunk strength and structural loading variables
and attempted to provide insight into how these factors
may be the underlying causes for trunk motions that
may be associated with risk of LBD. The literature was
summarized across the all planes of motion providing a
comprehensive evaluation for each of the potentially
contributing factors. This provided opportunity to draw
conclusions as well as identify major voids in the liter-
ature.

2. Methods

2.1. Selection of articles

The current review encompasses all articles published
in English before February 2000 that evaluated various
biomechanical measures during three-dimensional dy-
namic motions. An extensive literature search was con-
ducted using Medline and Institute for Scienti®c
Information databases as well as looking at the refer-
ence lists of the accumulated articles. Typically, there
have been ®ve groups of biomechanical measures that
have been commonly investigated in literature: strength,
IAP, trunk moments, spinal loads, and muscle activity
(agonistic and antagonistic). Based on these areas,
searches of the databases were accomplished using the
following key words: trunk motion, strength, IAP,
muscle activity, spinal loading, kinematics, low-back
motion, and lifting. Inclusion criteria for the review re-
quired that the study to have at least two levels of trunk
velocity, either uncontrolled (e.g. slow) or isokinetic (e.g.
30°/s or 10 cm/s). Studies were also required to have a
minimum of six subjects. In all, 54 studies were found to
evaluate multiple levels of trunk velocity.

For each study, the relative impact of increased ve-
locity for the appropriate biomechanical measures was
determined by computing the percent di�erence relative
to the lowest velocity. For example, the reference value
for a study that had both isometric and isokinetic ex-
ertions would be the static exertions while studies
without isometric exertions used the slowest velocity
level as the reference. When conclusions were drawn
about the various biomechanical measures, the studies
having a static exertion as the reference value were
considered to provide the most information about the
impact of increased dynamics. More credence was also
given to studies that controlled for trunk velocity than
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studies relying on subjective motion (e.g. slow). Thus,
the ``high quality'' studies were considered to be ones
that evaluated controlled velocities and had an isometric
reference exertion.

3. Results

3.1. Overview of the results

Tables 1±5 provide a summary of the studies that
evaluated trunk velocity. For each study, the velocity
conditions and study population are described along
with the results for the corresponding biomechanical
measures. The results were grouped by the primary di-
rection of motion consisting of extension (Table 1),
¯exion (Table 2), lateral ¯exion (Table 3), twisting
(Table 4), and extension with asymmetry (Table 5).
Forty-three of the studies evaluated extension exertions,
eight studies assessed ¯exion motion, four studies eval-
uated lateral ¯exion exertions, eight investigated twist-
ing motion and nine studies provided information about
extension exertions with asymmetry. Notice, several
studies evaluated multiple directions of motion.

By comparing the tables, one can appreciate how the
various studies have evaluated extension exertions and
particularly dynamic strength. Of the 46 extension
studies, 22 studies evaluated strength while less than 12
studies reported results within any of the other biome-
chanical measures. All of the ¯exion studies assessed
strength, as did the majority of the twisting (78%) and
lateral ¯exion (75%) studies. Few studies have investi-
gated IAP, muscle activity and spinal loads for lateral
¯exion and twisting exertions. Twenty-two of the studies
(out of 54) evaluated both genders while 29 of the
studies evaluated males only. Two of the studies pro-
vided no information about the gender of subjects and
one used an empirical model to evaluate the e�ect of
trunk velocity.

As stated earlier, two criteria were used to rate the
quality of the information derived from these studies.
First, higher quality studies were considered those that
controlled the trunk motion rather than relying on
subjective measures of velocity (e.g. slow, fast, normal,
etc). Seventy-six percent (41 studies) of the studies
controlled the trunk velocity while the remaining 13
studies used subjective velocities. Second, studies that
compared both isometric and dynamic exertions were
felt to provide a better appreciation and quanti®cation
of the role dynamics and were considered higher quality.
In these studies, isometric exertions were used as the
reference to determine the impact of velocity while the
other studies had the slowest dynamic exertion as the
reference. Thirty-®ve studies (65%) evaluated both iso-
metric and dynamic exertion. By combining the articles
that satisfy each of these criteria, 32 studies (59%) were

judged to provide the highest quality of information
when interpreting the impact of dynamics on the spine
(designated by bold letters in Tables 1±5).

3.2. Trunk strength

Dynamic motion generally decreased trunk strength
in all directions by approximately 10±30%. Most of the
high quality studies (14 studies) evaluating extension
strength (Table 1) reported diminished strength of 10±
30% for dynamic exertions compared to static condi-
tions with only a few studies ®nding some postures
having increased strength. The dynamic exertions with
increased strength occurred during more awkward pos-
tures (e.g. load placed at a full reach away from the
body) [38] or in an upright posture (as indicated by the
upward pointing arrows in Table 1) [31,49]. It appears
that some of the variability in the strength results for
extension may be attributable to whether the exertion
was isolated to the L5/S1 joint (e.g. lower body was
constrained) or was a whole body assessment (e.g. able
to move legs during exertion).

Flexion strength decreased for dynamic exertions by
5±80% for all but two studies (Table 2). Smith et al. [57]
reported that ¯exion strength increased by 34±75% as
compared to the isometric exertion. Khalaf et al. [31]
found similar results for males but not for the females.
The three studies that investigated dynamic lateral
¯exion strength reported a decrease of 11±88% for dy-
namic lifts (Table 3). Dynamic twisting strength was
found to be 15±80% lower than for isometric twisting for
the high quality studies (Table 4). Only two twisting
studies reported an increase in strength for the dynamic
lifts, one study reported increases for females only [57]
while the other included only one condition [66]. The
only two studies that evaluated asymmetric extension
exertions found mix results ranging from a decrease of
63% to an increase of 91% (Table 5).

For the studies that evaluated both genders, an in-
teresting trend in the impact of dynamics of the strength
of the individuals emerged. Strength for the males de-
creased with dynamic exertions by about 30% while the
femalesÕ decrease in capacity was about 15±20%. This
would mean that trunk motion had more an impact on
the male strength than the females by about 10%. This
gender ®nding was relatively consistent across all exer-
tion directions.

In summary, an individualÕs strength is reduced by
10±30% when exertions are performed dynamically as
compared to isometric strength. In other words, given
the same exertion level, a dynamic exertion would be
closer to the tolerance of the muscle than during a static
exertion, resulting in more risk of a muscular injury.
Trunk motion appears to have a greater impact on the
malesÕ strength than on the females.
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3.3. Intra-abdominal pressure

The studies evaluating IAP provided very inconclu-
sive results when comparing dynamic trunk motion to
isometric exertions. In the high quality studies that
evaluated extension exertions (Table 1), IAP was found
to decrease in four studies, no di�erence in one, and
increased in one when dynamic motion was involved.
No studies have evaluated IAP while performing dy-
namic ¯exion, lateral ¯exion, or twisting exertions.
Marras and Mirka [11] combined the results of four
individual studies evaluating IAP and concluded that
IAP increased monotonically with trunk velocity.
However, this increase in IAP appeared to be only at
high levels of exerted force. To date, there has been no
comparison of the impact of dynamics on IAP between
males and females.

In summary, the results for IAP were inconclusive.
The impact of dynamics on IAP seems to be greatest at
high exertion levels. There is a need for a better under-
standing of the in¯uence of trunk dynamics on IAP,
particularly di�erences between genders, as well as an
improved appreciation of the biomechanical role of
IAP.

3.4. Trunk moments

Overall, the moments imposed on the trunk have
been observed to increase by 15±70% during the dy-
namic exertions. The majority of the studies that eval-
uated trunk moments were not considered to be in the
high quality category since most of them did not control
velocity. For extension exertions (Table 1), studies that
used subjective motions found increases ranging from 3±
227% while controlled motion exertions actually saw the
trunk moments decrease with the introduction of dy-
namics (by 12±69%). In the study that found a decrease
in trunk moment, the lower torso was restricted which
may have in¯uenced how the exertions were performed
(e.g. subject pulled the weight closer to the body during
the dynamic conditions). No di�erence between trunk
moments was found in one study [29] but there was no
di�erence in the actual trunk velocity between the two
subjective velocity categories (preferred and faster than
preferred). Similarly, McIntyre et al. [68] reported that
individuals gravitated towards a preferred trunk velocity
when exerting below 25% of their maximum e�ort,
which may provide insight into the results of Granata et
al. [29]. Similar increases in trunk moment were reported
for asymmetric extension exertions (Table 5). No studies
evaluated the imposed trunk moments for ¯exion and
lateral ¯exion. The only study to evaluate imposed
twisting moments was Marras and associates [63] who
found the trunk moments to increase 15±25% in most
conditions. To date, di�erences in the impact of trunk

motion between males and females have yet to be ex-
plored.

In summary, imposed trunk moments during dynamic
exertions were found to be greater than during isometric
exertions, monotonically increasing with faster motions.
Since much of the research evaluating dynamic trunk
moments have relied upon uncontrolled velocities, there
is a need for further investigation of how imposed trunk
moments are a�ected by trunk motion under more
controlled conditions, especially in the non-extension
exertions.

3.5. Muscle activity

In general, both agonistic and antagonistic muscle
activity increased with increased dynamic trunk motion.
Agonistic activity increased by approximately 10±40%
while antagonistic activity increased by as much as
450%. There have been no studies that have evaluated
muscle activity while performing dynamic ¯exion exer-
tions and few evaluating twisting or lateral ¯exion. For
the 10 high quality extension studies (Table 1) evaluat-
ing agonistic muscle activity, most (all but four) found
an increase in activity with dynamic motion (range of 4±
109% increase). Gallagher [25] reported decreases in the
activity of the Latissimus Dorsi, which accompanied
small (non-signi®cant) increases in erector spinae muscle
activity. Decreases in agonistic activity were also found
for very fast extensions (e.g. 90°/s) [48]. The only study
that evaluated lateral ¯exion and satis®ed the inclusion
criteria found agonistic muscle activity to increase by
46±116% with dynamic motion [61]. Two of three
studies found increases in agonistic activity in twisting
(6±157%) (Table 4). Four studies found decreases in
agonistic activity with trunk motion [25,44,45,65]. The
exerted force for dynamic condition velocities also de-
creased as compared to the isometric exertions, thus, the
decrease in activity may be more re¯ective of the force
exerted. Marras et al. [63] reported a decrease in ago-
nistic activity when the subjects twisted in awkward
postures only.

Few studies (9) have investigated the impact of trunk
dynamics on the antagonistic muscle activity. Since
these muscles are not required for force generation, in-
creased activity indicates more coactivity of the trunk
musculature system and less e�ciently but probably
related to stability requirements. Results from the high
quality studies indicated that antagonistic activity might
be a�ected more by dynamics than the agonistic mus-
cles. For the extension exertions (Table 1), dynamic
motion increased antagonistic activity by about 50±
450% while dynamic lateral ¯exion exertions (Table 3)
increased the antagonistic activity by 20±133%. Al-
though McGill [69] did not directly compare the an-
tagonistic muscle activity during dynamic lateral ¯exion
to static, he noted that dynamic exertion resulted in
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moderate levels of co-contraction, in other words,
presence of activity in the antagonistic muscles. Dy-
namic antagonistic muscle activity increased in two of
the three twisting studies (by 6±252%) (Table 4).

In summary, trunk dynamics dramatically in¯uenced
both the agonistic and antagonistic muscle activity.
Since the antagonistic muscle activity was impacted
more, the overall coactivity of the trunk musculature
was signi®cantly increased without resulting in any ad-
ditional force generating capability. Few studies have
evaluated the muscle activity while performing ¯exion,
lateral ¯exion, and twisting exertions. Future studies are
also needed to investigate how trunk dynamics might
in¯uence muscle activity for males and females di�er-
ently.

3.6. Spinal loading

In general, trunk dynamics was found to increase the
three-dimensional spinal loads with increases of 10±50 %
for compression, 50±325% for lateral shear, and 10±30%
for A±P shear. The high quality extension studies (Table
1) reported an increase of 3±120% in compression force
when dynamic trunk motion was compared to isometric
exertions. Two of these studies reported increased A±P
shear forces during dynamic exertions (by 23±57%).
Reilly and Marras [55] (the only other study to report on
A±P shear force), found a decrease in shear for the
slowest velocities (less than 30°/s). Only two of the
studies evaluating extension exertions (Table 1) evalu-
ated lateral shear forces with one reporting a decrease
and one reporting an increase with the dynamic condi-
tions. This apparent con¯ict in results may be a direct
re¯ection of the low levels of expected lateral shear force
during sagittally symmetric exertions. In the one study
that reported lateral shears in asymmetric extensions
(Table 5), the lateral shears increased by 1±333%.
However, this study was not considered to be in the high
quality study group.

Only one study found in the literature [61] investi-
gated spinal loads during lateral ¯exion (Table 3). These
authors reported an increase in compression, lateral
shear, and A±P shear force by 10±33%, 50%, and 100±
325%, respectively. The only study included in the pre-
sent review to evaluate spinal loads during twisting ex-
ertions reported a 50% increase in compression and a
15±45% increase in the lateral shear forces during the
dynamic exertions [62]. Combining the results of these
studies with the one asymmetric exertion study, non-
sagittal trunk motions had a large impact on the lateral
shear forces. No studies could be located that evaluated
spinal loads during ¯exion exertions.

In summary, trunk dynamics had a signi®cant impact
on three-dimensional spinal loads. Dynamic sagittally
symmetric exertions a�ect spinal compression and A±P
shear forces while non-sagittal (lateral ¯exion and

twisting) exertions result in higher compression and
lateral shear forces. The impact of trunk dynamics on
spinal loads for females has yet to be investigated. Since
females would be expected to have di�erent trunk
anatomies [70±75], the impact of trunk dynamics on
spinal loads may be di�erent for females as compared to
males. More studies are needed to evaluate the spinal
loads during dynamic ¯exion, lateral ¯exion, twisting,
and asymmetric extension exertions.

4. Discussion

Based on this review, it is clear that trunk dynamics
has a signi®cant impact on how the individual performs
an exertion and how the trunk musculoskeletal system
behaves. Trunk motion severely reduces the individualÕs
ability to generate force. This would mean that when a
task requires a certain level of force to be employed,
more dynamic motions would hinder the ability of the
worker to meet the demands of the job. Potentially, the
mismatch between the individualÕs strength capability
and the job demands may result in increase risk of the
LBD in industry, speci®cally, muscular injuries.

One factor that is highly dependent upon dynamic
strength is the dynamic functional capability of the in-
dividual. Several studies have attempted to quantify the
functional capacity of an individual without an LBD
[76±84]. In general, these studies report the dynamic
functional capability for sagittal, lateral, and twisting
motion to be 40±140°/s, 70±120°/s, and 65±170°/s, re-
spectively, which was dependent upon the force exerted.
This indicates that high risk jobs found in the Marras
studies [1,2] and the cases in the Norman study [3] would
have velocities that were much closer to their expected
dynamic capabilities as compared to the corresponding
low risk and control jobs.

In addition, trunk strength would also be directly
linked to muscle coactivity. Decreases in strength ca-
pacity during dynamic exertions suggest that more
muscle force would be required to respond to the ex-
ternal load demands. In most cases, the activity of the
agonistic muscles as well as the antagonistic muscles
increased during dynamic motions. This indicates that
there is not only more activity in the primary force
generating muscles present, but also more overall co-
activity of the trunk musculature in general.

Higher levels of coactivity have a signi®cant impact
on the spinal loads since increased antagonistic muscle
activity must be o�set by the agonistic forces. In other
words, the muscle activity from the antagonistic muscles
produces more loading on the spinal structures without
contributing to the ability to o�set the external moment
imposed on the spine. In the studies that evaluated
spinal loads, trunk dynamics were found to signi®cantly
increase the compressive forces on the spine and seemed
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to be independent of the type of motion used during the
exertion. However, the impact of dynamics on the shear
forces was much more dependent on the exertion type.
Dynamic sagittally symmetric extensions increased the
A±P shear forces while non-sagittal motions impacted
the lateral shear forces. In all types of dynamic exer-
tions, there was more three-dimensional or complex
loading on the spine.

The spine tolerance literature suggests that disc strain
and vertebral segment failure increases signi®cantly
when loading occurs in multiple directions simulta-
neously [85±89]. This indicates that trunk dynamics
places the spinal structures at increased risk of failure
since spinal loads increased in multiple directions for all
types of motions. Fathallah et al. [24] found that the
load rate for compression and A±P shear increased with
trunk motion during sagittally symmetric motion and
for all three directions (compression, A±P shear, and
lateral shear) for asymmetric lifting. The rate at which
the load is applied to the spine also in¯uences the me-
chanical properties of the disc [90±95]. Wang et al.
[94,95] predicted that the stresses in the annulus ®bers
increased with load rates using a ®nite-element model.
However, Yingling and associates [96,97] found that the
ultimate strength of the spinal motion segments in-
creased with faster load rates. These authors also indi-
cated that while the magnitude of the loads a�ects the
tolerance of the spine, the rate of the load actually in-
¯uences the site of the failure. Thus, both the magnitude
of the loads as well as the rate of the loads has the po-
tential of being the underlying mechanisms that explains
the relationship between trunk motion and LBD risk [1±
3]. Both of these factors have been found to be predic-
tive of high-risk of LBD [98]. These indices provide a
measure of how likely a task resembles a high risk job.

The load imposed on the spine may also have had an
impact on the resulting muscle activities and subsequent
spinal loads. Some of the increase in muscle activity
(especially for the agonistic muscles) and spinal loads
may have resulted from the higher imposed trunk mo-
ments that accompany dynamic motions. When trunk
moments are increased, the trunk muscles have to in-
crease their output to o�set the moment, which result in
the higher spinal loads.

The importance of IAP in the reduction of the trunk
moment was not substantiated entirely with many
studies ®nding con¯icting results. The relationship be-
tween IAP and trunk motion is poorly understood since
most of the studies were con®ned to the extension ex-
ertions (either sagittally symmetric or asymmetric). With
no clear relationship between trunk motion and IAP, it
appears that IAP may be a by-product of the muscle
activity rather than an active contributor to o�setting of
the imposed trunk moments [11].

Trunk motion impacts the musculoskeletal system by
altering the recruiting patterns of the trunk muscles.

Muscle coactivity appears to be the driving force behind
the diminished strength and functional capability that
accompanies trunk dynamics as well as the increase
spine structural loading (IAP, trunk moments, and spi-
nal loads). The increased co-activation of the trunk
musculature associated with increases in trunk motion
may have resulted from programming of the neurolog-
ical pathways that control the muscles and are ®ne-
tuned through experience [99]. McIntyre et al. [100]
provides evidence of motor recruitment programs by
reporting that individuals adopt a preferred trunk ve-
locity when performing an exertion. In other words, an
individual will adopt a certain motion pro®le that is
accompanied by a speci®c co-activation pattern based
on previous exposure to similar motions and these mo-
tor recruitment programs are constantly updated.

Based on this premise, trunk dynamics provides a
concise representation of the current status of the trunk
musculoskeletal system. Many studies have found trunk
velocity and acceleration to be better discriminators
between individuals with and without LBD than range
of motion measurements (Table 6). When an individual
becomes injured, the musculoskeletal control program
must be adjusted to compensate for limitations related
to diminished muscle functioning, structural restrictions,
and guarding behavior [81,99]. These adaptations to the
motor control program are manifested in the high-order
motion pro®les (velocity and acceleration) for the indi-
vidual with LBD. Although the recruitment pattern will
be changed as a result of the injury, the pattern would be
expected to be consistent. Marras and associates [99]
reported that impairment magni®cation (insincere
e�ort) resulted in more variability in the motion pro®le,
providing further evidence of a central motor recruit-
ment program that guides trunk motion. Collectively,
these studies point toward trunk motion as a biomarker
of the status of the lumbar spine.

4.1. Other factors that in¯uence trunk motion

Several other factors may in¯uence the trunk motions
of the individual as well as the corresponding biome-
chanical outcomes. One factor that may impact how the
exertions are performed is gender. The only studies in
the current review that have evaluated gender di�erences
were limited to strength assessments. These studies
found males to be impacted more by trunk dynamics
than females, that is, males had larger decreases in
strength for dynamic exertions. Males have also been
reported to have higher levels of functional capability to
perform dynamic motions, that is, males are able to
move up to 40% faster than females [79,80]. It may be
this discrepancy in functional capability (strength) that
results in trunk dynamics impacting males more. It
would also be possible that the muscle activity patterns
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and subsequent spinal loads would be di�erent between
genders, and thus, the impact of trunk motion on the
loads may also be a�ected. Di�erences in muscle activity
and spinal loads may result from strength di�erences as
well as muscle anatomy variations [70±75]. Strength
capability di�erences between the genders may also in-
¯uence the dynamic trunk moments imposed on the
spine.

Trunk dynamics has also been in¯uenced by several
workplace factors such as box weight, task asymmetry,
handles on the box as well as how the lifting task was
performed (e.g. mode of lift). Typically, when the
amount of box weight increased, the trunk motion was
found to decrease by 1±27% in the sagittal plane [110±
115]. Allread et al. [116] found that increased box
weight resulted in larger lateral trunk velocities during
asymmetric lifting. Task asymmetry has a major e�ect
on the trunk motions with more asymmetric tasks
having greater three-dimensional trunk velocities. The
sagittal and lateral trunk motions were found to in-
crease by 20±50% while a much greater impact was
seen for twisting velocities (100±300% increase in mo-
tion) [110,116,117]. Conversely, one study found no
e�ect of asymmetry of the trunk motions [29]. Sagittal
trunk velocity was found to be higher when handles
were not present on the box by about 3°/s [118]. Thus,
workplace factors have the potential to alter the mo-
tions of the worker, ultimately in¯uencing the spinal
loads and subsequent risk of LBD.

The mode in which the exertion is performed impacts
the trunk motion adopted. Gagnon and Smyth [113]
found that individuals lifted faster as compared to

lowering exertions. The biomechanics during lifting and
lowering were also found to be di�erent with lowering
having greater strength, lower muscle activities, and
higher spinal loading [18,50,119±122]. Marras and
Mirka [49] found strength to increase with lowering
exertions (up to 14%). The number of hands used
during lifting has also been found to in¯uence the trunk
motions with two-handed lifts having more sagittal
motion (10±30% more) and one-hand lifts having more
lateral motion (about 50%) [116,117]. There would ap-
pear to be the potential for the lifting technique adopted
to in¯uence the trunk motion, although the current
results are con¯icting [123,124]. While the results to
date are less than conclusive, the way the exertions are
performed has an impact on the motion within the
trunk.

Individual factors such as anthropometry or LBD
status also can in¯uence trunk motions. Many studies
found the functional capacity of individuals with a LBD
to be diminished by as much as 70% [76,79±81] and had
lower dynamic strengths of about 20±40% [34,40,53,56,
60,64]. The impact of trunk motion on the strength for
these individuals was less than for asymptomatic indi-
viduals [40,60]. Dynamic strength decreased by 27% for
extension, 5% for lateral ¯exion, and 15% for twisting
exertions. On the other hand, Lagrana et al. [40] actually
found increased strength in ¯exion for the dynamic ex-
ertions (about 45%). Body compositions may also have
a role in how an individual performs a certain exertion.
Factors such as body weight and height may alter the
trunk motions. For example, taller individuals may have
to bend farther forward when lifting, possibly causing

Table 6

Summary of studies evaluating the impact of trunk motion on the ability to discriminate between LBP and non-LBP individuals

Study Range of motion Velocity Acceleration

Bishop et al. [100] � �� ��

Esola et al. [101] NSa

Ferguson et al. [76] � �� ��

Gomez [102] �

Kaigle et al. [103] ��

Klein et al. [104] �

Langrana et al. [40]b �

Mandell et al. [43] NSa

Marras et al. [79] �� ��

Marras et al. [80] � �� ��

Marras et al. [81] � �� ��

Marras and Wongsam [105] � ��

Masset et al. [82] NSa ��

Mayer et al. [106] ��

McClure et al. [107] NSa �

McIntyre et al. [108] ��

Pope et al. [109] �

* Indicates either mixed results or weaker LBP and non-LBP discrimination ability (e.g. P-values below 0.05 or error rates above 40%).
** Indicates stronger LBP and non-LBP discrimination ability (e.g. P-values below 0.01 or error rates below 25%).
a Indicates no signi®cant LBP and non-LBP discrimination ability (e.g. P-values >0.05 or error rates above 50%.
b No statistical test performed.
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them to move faster during the exertion. However, re-
search indicating how body dimensions in¯uence trunk
motions is very limited.

Finally, fatigue of the musculature has also been
found to in¯uence the trunk motions, muscle activities,
and subsequent spinal loading. Several authors have
reported that trunk motion in the primary plane (e.g.
¯exion and extension) decreases as an individual be-
comes fatigued while motion in the o�-planes (e.g. lat-
eral ¯exion and twisting) increased [125,126]. Sparto
et al. [127,128] found dynamic strength to decrease and a
more stoop lifting style was adopted as the subject fa-
tigued. Marras and Granata [129] have also reported
that lifting motion changed over a 5-h lifting session,
resulting in decreases in trunk motion but increase in hip
motion. While these studies have provided insight into
how fatigue in¯uence trunk motion, our review failed to
yield any studies that compared the e�ect of fatigue
during dynamic and static exertions, simultaneously. A
better understanding of the impact of fatigue during
dynamic and isometric on trunk strength, muscle coac-
tivity, and spinal loads is needed.

4.2. Future research

As can be seen from the Tables 1±5, evaluation of
trunk motion has predominantly been performed for
extension exertions or assessing trunk strength. A
complete understanding of the in¯uence of trunk dy-
namics will require more studies evaluating the other
biomechanical measures, especially for the non-exten-
sion exertions. More complex motions will also need to
be evaluated. Some of the best insight may come from
assessments that include all directions of exertion within
the same study. There is also a need for additional epi-
demiological studies to further establish trunk motion as
a risk factor for LBD since few of these types of studies
exist currently.

Additionally, the development of more easy-to-use
techniques for the quanti®cation of the trunk motion
and the corresponding biomechanical measure needs to
be undertaken. Many of the techniques employed for
the studies in this review require elaborate measure-
ment devices such dynamometers, motion analysis
systems, and electromyography. While it is important
to have sophisticated measurements to gain an in-depth
understanding, simpler measurement tools will allow
assessment of trunk motion in the actual workplace.
Through improved ability to provide quicker and more
versatile assessment of the workplace, a better under-
standing regarding links between trunk dynamics and
risk of LBD may be obtained. Future research needs to
focus on the pathways in which trunk motion may lead
to LBD, particularly linking it to actual incidences of
LBD.

4.3. Potential limitations

Many of the summaries for the various biomechani-
cal outcomes were based on few studies. While this re-
view is the ®rst attempt to understand the impact of
trunk motion on common biomechanical measures, the
actual number of high-quality studies was particularly
limited for the non-extension exertions. In several cases,
there were not any studies under a given biomechanical
factor. However, these recommendations do represent
the state of the literature and what is currently known.

With any review, the conclusions drawn are only as
strong as the studies being evaluated. Since di�erent
researchers adopt vastly di�erent measurement tech-
niques (e.g. di�erent strength assessment devices, con-
trolled the exertion di�erently, various processing and
testing procedures, etc.) as well as di�erent experimental
conditions, total consensus within the results becomes
di�cult. With this in mind, the review attempted to
address this issue by only including studies that control
the trunk motion and have an isometric reference.
However, more rigorous experimental methods may
provide a more de®nitive account of the impact of trunk
motion on the musculoskeletal system.

5. Conclusion

Trunk motion had a dramatic a�ect on the muscle
coactivity, which may dictate other biomechanical out-
comes. It appears the increased muscle coactivation that
accompanies increased trunk motion may be the un-
derlying source for the decrease strength capability as
well as the increased muscle force, IAP, and spinal
loads. Muscle coactivity may also in¯uence the physical
capability of the individual. Based on the results in the
current review, the ability to perform a task without risk
may be signi®cantly compromised by the muscle coac-
tivity that accompanies more dynamic exertions. In
addition, many workplace and individual factors have
been found to in¯uence the trunk motions during dy-
namic exertions. It is apparent that trunk motion in-
creases the risk of LBD and to better control LBDs in
industry, more attention to trunk kinematics due to the
job is needed.
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