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Device status category: 3.

Low back disorders (LBDs) are one of the most fre-
quently reported musculoskeletal problems, the second
most common reason care is sought from a physician,
and the second leading cause of absenteeism from work
in the United States.?” Given the prevalence of LBDs, it
is problematic that there are few quantitative means to
objectively document the extent of a disorder. Impair-
ment ratings of LBD can vary by as much as 70% using
current systems.'> Low back disorder diagnoses and
classification schemes rarely are based on quantitative
indicators and we are unable to easily assess and diag-
nose LBDs. Spratt et al** emphasized this point via an
estimate that a precise diagnosis is unknown in 80% to
90% of disabling low back disorders.

An accurate measure and diagnosis of LBD is desir-
able for several reasons. First, an accurate measure of
LBD status provides a measure by which the extent of
the disorder can be judged and by which the degree of
progress can be measured. Second, an accurate diagno-
sis is needed for prescribing appropriate treatment. Mis-
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interpreting the source of LBD can result in treatments
that may exacerbate and prolong the LBD event. Third,
an accurate diagnosis facilitates the avoidance of situa-
tions that may lead to further injury, compounding the
disorder. When a quantitative description of the pa-
tient’s abilities is compared with a quantitative descrip-
tion of job demands, an objective means of determining
whether the patient can successfully perform the work is
available. Finally, accurate diagnoses minimize the risk
that the patient will be exposed to unnecessary diagnos-
tic tests and unnecessary surgery.

Low back disorders are assessed and classified in
several ways. Traditionally, physicians have attempted
to identify a pathoanatomic source of the LBD. In this
approach, patients are classified according to the pre-
sumed structure that is injured or painful. Imaging tech-
niques such as computed tomography, magnetic reso-
nance imaging, and myelography are used to help
identify the structure that has been compromised. How-
ever, a pathoanatomic diagnosis has been found in
fewer than 15% of patients with LBD.?’ In addition, it
has been estimated that more than 25% of healthy
asymptomatic individuals may have imaging-based evi-
dence of a disc herniation. Thus, anatomically based
diagnoses are difficult to quantify, difficult to identify,
and may incorrectly identify the source of the structural
problem.

To overcome these limitations in anatomically based
diagnoses, the Quebec study classification system has
been developed.*® This classification accounts for the
fact that structural abnormalities are not always identi-
fiable in LBD and recognizes that LBDs are time depen-
dent. This classification scheme is based upon patient
symptom reports and can take patient history into ac-
count. However, common symptoms can arise from
different structural problems, thus confounding the di-
agnosis. Symptoms cannot be well quantified and can be
only a gross measure of the extent of the disorder. In
addition, the system may limit the prescription of opti-
mal treatment modalities and may not trigger the use of
precautionary measures to avoid re-injury.

The final LBD evaluation system consists of func-
tional assessments. Functional assessments attempt to
measure the functional capacity of the trunk’s musculo-
skeletal system.*'7*35 Traditionally, these systems
have attempted to measure the amount of force or
strength the patient is willing to generate under isomet-
ric, isokinetic, or isodynamic conditions. These systems
do provide a quantifiable measure of force that can be
compared with a normative group. However, these
strength measures usually require maximal voluntary
force to be exerted against a set resistance. Therefore,
strength may be limited by pain tolerance, which is
known to vary widely between people. There also is a
low correlation between strength measures using differ-
ent measurement technologies.>* In addition, these tests
may be associated with a risk of injury.?

The notion that functional assessment can reveal the
status of the trunk’s musculoskeletal system is appealing
because it lends itself to a set of quantifiable measures
that can take into account the co-activation of many of
the force generating structures in the trunk, and may
provide a summary of the trunk’s neuromuscular status.
However, many of these traditional measures of func-
tion may not be able to measure the “natural” status of
the trunk. The strength testing dynamometers externally
load the trunk to the point where trunk performance no
longer reflects the learned or pattern of coordinated
effort of the trunk’s neuromuscular control system. As
an alternative, Marras and Wongsam?* used trunk mo-
tion characteristics to quantify the trunk’s unloaded
free-dynamic activity in patients with LBD and healthy
subjects. They found that trunk angular velocity distin-
guished well between the two groups and concluded
that the measure held great promise for quantifying the
extent of an LBD. The present study will extend this
concept to include more comprehensive three-dimen-
sional measures of motion and will investigate the abil-
ity of such measurement sets to quantify and classify
LBDs. :

This research had several goals. The first was to
evaluate the repeatability and reliability of free-dynamic
three-dimensional trunk motion as a measure of the
trunk’s musculoskeletal status. The second was to de-
termine whether a method could be established for
quantifying the extent of a disorder based on trunk
motions. The final goal of the research was to determine
the extent to which trunk motion measures might be
used as a quantifiable means of classifying LBDs.

B Methods

The experimental design used in this study assumed that by
observing motion characteristics as a function of various
asymmetric bends of the trunk, a composite measure of the
trunk musculoskeletal control system could be established.
During symmetric lifting motions, dynamic motion character-
istics are controlled primarily with the large, well-developed
muscles such as the erector spinae.3? However, during asym-
metric exertions, motor control becomes more complex and a
combination of the smaller less developed muscles (such as the
internal and external oblique groups) would be expected to
synchronously control a precision bending motion of the
trunk.”* We believed that this change in the primary control
muscles would result in a reduced range of motion and in a
reduction of the dynamic motion characteristics when a pre-
cision bending task became more asymmetric. This change
would be detectable and quantifiable by monitoring three-
dimensional trunk motion characteristics. Previous studies®’
have shown that this is indeed the case for healthy subjects.
The current study will extend this concept to those suffering
from various categories of LBD to determine whether the
presence of various pathoanatomic conditions and symptoms
could be quantitatively identified via the motion characteris-
tics or “motion signature,” compared with healthy uninjured
subjects.
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To achieve this goal, the role of factors other than LBD that
may affect trunk motion also must be considered. These fac-
tors would be expected to include age and gender. Hence, the
effect of these factors on trunk motion also must be evaluated
independently from the effects of LBD status.

Experimental Protocol. An experiment was developed to
solicit the trunk motion characteristics or motion signature
response to flexion and extension trunk bending motions. In a
repeatability study, 20 healthy subjects were tested once a
week for 5 consecutive weeks. In the main study, a group of
healthy subjects and a group of subjects with various LBDs
were tested. In both studies, subjects were asked to flex and
extend their trunks repeatedly in various symmetric and asym-
metric planes of movement while the three-dimensional mo-
tion characteristics of the trunk were monitored. No external
resistance or load was applied to the trunk during these tests.
During the testing session, the subjects viewed a display screen
that indicated the instantaneous twisting (asymmetric) posi-
tion of the trunk. A twisting position target (+2°) also was
identified on the screen. The subjects were asked to repeatedly
flex and extend their trunk at their preferred speed while
maintaining their twisting position within the target. If the
twisting position fell outside the target during the trial, a tone
was automatically sounded and the trial was repeated. Thus, it
was possible to monitor the free dynamic natural motion
characteristics of the trunk without physically restricting or
interfering with the trunk motion.

Subjects. Ten males and ten females who had never experi-
enced a LBD were recruited to be subjects in the repeatability
study. The age of this group was 27 + 4.8 years (mean *
standard deviation), the height was 171 + 7.7 cm, and weight
was 66.5 = 8.1 kg.

In the main study, the normal subject population consisted
of 339 men and women 2070 years old who claimed to have
never experienced significant back pain. The number of sub-
jects of each gender and the number of subjects within each
decade of age are shown in Table 1. One-hundred-seventy-one
patients with various LBDs were recruited from the practices
of two of the authors (RRC and SRS), which are secondary
and tertiary referral practices for LBDs. Consequently, symp-
toms generally had been present for more than 7 weeks at the
time of evaluation. Thus, the patients were considered to have
a chronic LBD. Of these subjects, 96 were men and 75 were
women. Only patients with a well-diagnosed LBD were in-
cluded in this study to avoid confounding. Anthropometric
characteristics of the healthy and LBD groups also were con-
sidered. Of the anthropometric characteristics, only standing
height was similar between the two groups. Trunk breadth

Table 1. The Number of Healthy Subjects Tested Shown
as a Function of Age and Gender

Normal Subjects

All Age
Sex Groups 20s 30s 40s 50s 60s
Male 193 67 38 38 25 25
Female 146 45 25 26 24 26
Total 339 112 63 64 49 51

Table 2. LBD Classification Showing the Number of
Patients and Percentage of Total Patients With LBD in
Each Category

Category Number of Patients Percentage of Total
Quebec 1 16 94
Quebec 2 17 10
Quebec 3 17 10
Spondylolisthesis 16 94
Herniated disc pain >3 30 18
Herniated disc pain <3 12 7
Stenosis 26 15
Quebec 9.2 1 6
Nonorganic 17 10
Quebec 11 9 5.2
Total m 100

and depth dimensions generally were 2 cm larger for the LBD
group, while spine length and leg length generally were 1-3 cm
shorter for the LBD group.

LBD Classification. In this study, we analyzed trunk motion
differences among 10 patient categories that included ana-
tomic classifications as well as pain location categories gener-
ally corresponding to those of the Quebec Task Force. The
following 10 categories were evaluated.

1. Low back pain with proximal radiation (Quebec Class 2).
2. Low back pain with distal radiation (Quebec Class 3).
3. Localized low back pain (Quebec Class 1)

4. Isthmic spondylolisthesis.

5. Lumbar disc with herniated nucleus pulposus (HNP)
with minimal or no pain—3 or less on a 10-point analog
visual scale (HBP < 3).

6. Lumbar disc with HNP with moderate or worse pain—
greater than 3 on a 10-point analog visual scale (HNP > 3).
7. Spinal stenosis

8. Postoperative patients with pain (Quebec Class 9.2)

9. Patients with evidence of significant nonorganic pain
components.

10. Other diagnoses, predominately idiopathic scoliosis
(Quebec Class 11).

The number of subjects associated with each LBD classifi-
cation group is shown in Table 2. The list of categories was
finalized after considerable analysis of the clinical and practi-
cal issues.

‘This set of categories discriminates between those herniated
disc patients who have minimal or no pain and those who have
more severe pain. Patients had varying degrees of relief after
nonsurgical management of lumbar disc herniation, and we
speculated that the lumbar motion may vary greatly with pain
severity. Patients with isthmic spondylolisthesis were evalu-
ated as a distinct category. Although no specific category exists
for this diagnosis within the scheme of the Quebec Task Force,
we believe that isthmic spondylolisthesis is a sufficiently dis-
tinct structural anomaly to warrant evaluation for specific
motion characteristics. There were too few patients with de-
generative spondylolisthesis to permit their inclusion in this
study.

The patients with low back pain, with and without varying
radiating pain (Quebec 1, 2, and 3), included patients who (at
various points through their treatments) underwent specific
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imaging tests that were negative for any significant neural
comptession, and patients who had never been subjected to
such imaging. Because those with distal radicular pain without
prior imaging may represent patients with lumbar disc herni-
ation, they were excluded from this analysis. In addition,
patients who could not be classified because of insufficient
clinical information were extluded, as were those with over-
lapping diagnoses, such as spondylolisthesis and disc hernia-
tion,

The presence of potential nonorganic components of indi-
vidual patients’ pain syndromes, which could affect volitional
movement, was recognized. For most patients, signs of non-
organicity were recorded in five categories: 1) superficial ten-
derness, 2) overreaction, 3) regionalization of symptoms, 4)
variation of exam with distraction, and 5) simulation maneu-
vers.** Patients were considered to have a significant nonot-
ganic pain component if signs in more than three categories
were present or if elevation of the Hs or Hy scale was seen on
Minnesota Multiphasic Personality Inventory testing.

Experimental Design. Five asymmetric positions of the
trunk were tested in this study. Asymmetry was defined as the
amount of trunk twist in the transverse plane of the body.
Asymmetry was set at five levels: 1) a sagittally symmetric
position (0), 2) 15° of twist to the right (15 right), 3) 15° of
twist to the left (15 left), 4) 30° of twist to the right (30 right),
and 5) 30° of twist to the left (30 left). These asymmetric lines
of action are illustrated in Figure 1. The initial testing position
for each subject consisted of the 0 condition followed by the
two 15° conditions, followed by the two 30° conditions. The
order of the right and left conditions were counterbalanced in
the experimental design. Subjects were not always able to
perform all conditions. o

Twenty-six dependent variables were observed in this ex-
periment as a function of each asymmetric condition. The
ability variable simply described the capability of the subject
to complete the various experimental conditions. The second
variable consisted of twisting range of motion (ROM) capa-
bility (not part of experimental conditions). Fourteen trunk
motion characteristics or features were observed as a function
of the experimental conditions. These characteristics consisted
of the following.

1. The ROM (difference between maximum and minimum
position) in the sagittal plane.

- Range of motion in the frontal plane.

- Range of motion in the transverse plane.*

. Peak flexion velocity in the sagittal plane.

. Peak extension velocity in the sagittal plane.

. Peak flexion acceleration in the sagittal plane.

. Peak extension acceleration in the sagittal plane.

- Peak right lateral (frontal) bending velocity.

. Peak left lateral bending velocity.

10. Peak right lateral bending acceleration.

11. Peak left lateral acceleration

12. Peak right axial velocities in the transverse plane.*
13. Peak left axial velocity in the transverse plane.*

14. Peak right axial acceleration in the transverse plane.*
15. Peak left axial acceleration in the transverse plane.*

N XN ANNDWN

* These motion characteristics were limited by the experimental con-
ditions.

Asymmetric Reference Planes

o
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Figure 1. Asymmetric planes defining the testing conditions.

Finally, 10 weighting coefficients were used to characterize
the continuous nature of each of the angular position, velocity,
and acceleration profiles in the sagittal plane. These coeffi-
cients were computed based on the optimal feature extraction
procedure that enabled us to accurately reconstruct the con-

tinuous profiles while reducing the dimensions of the original
data.?3

Apparatus. The trunk’s three-dimensional dynamic trunk
motion characteristics were monitored in this study with a
triaxial electrogoniometer. This device was developed in our
laboratory and is referred to as the lumbar motion monitor
(LMM). This device has been used previously to document
trunk motions used by workers in industry.?? The LMM is an
instrumented exoskeleton attached to the shoulders and pelvis.
It measures the difference in trunk position of primarily the
lumbar spine (as a unit) relative to the pelvis. The LMM
signals were sampled at 60 Hz via an analog-to-digital con-
verter and a portable 386-based microcomputer. After the
data were collected, the signals were processed in the labora-
tory to determine position, velocity, and acceleration of the
trunk as a function of time in the sagittal, frontal (lateral), and
transverse (axial twisting) planes of the body. Voltage readings
from the potentiometers were converted into angular position
in the cardinal planes using a regression (calibration) model
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(R? = 0.978 sagittal, 0.976 lateral, 0.983 twisting). The
angular velocity and acceleration were obtained through nu-
merical differentiation. Filtering (to eliminate noise) also was
performed before differentiation of the signal.>® Validation
studies®® indicated that the LMM’s measurement of trunk
angular position, velocity, and acceleration in three-dimen-
sional space was similar in.accuracy to that of video-based
motion assessment systems. Note that LMM-generated accel-
eration estimates were not directly compared with accelerom-
eter readings. However, others using this differentiation tech-
nique have found that it relates well to measured acceleration.>®
The transverse plane position signal from the LMM was wired
to a comparator circuit that provided feedback to the subject
so transverse plane motion, and thus the asymmetric experi-
mental conditions, could be controlled.

Measurement Repeatability. To assess the repeatability and
reliability of the LMM testing protocol, an initial study was
performed. Twenty normal subjects performed the experimen-
tal protocol on five separate testing occasions, with a 1-week
period separating each testing session. The trunk motion char-
acteristics in the sagittal and frontal planes were compared
over the five testing periods. There were no statistically signif-
icant differences among the trunk motion characteristics be-
tween the five testing sessions (multivariate analysis of vari-
ance, P > 0.05). Cronbach’s alpha correlation coefficients
(reliability measure) were computed for the trunk motion vari-
ables considered in this study. These correlations are shown in
Table 3 as a function of the various trunk motion measures.
These correlations varied as a function of the experimental
conditions with the 0 conditions yielding the best correlation
coefficients. Correlations in the other conditions and those
associated with the continuous variables varied greatly. Table
3 served as a rationale for selecting motion variables that
would be acceptable for the LBD quantification and classifi-
cation. Only variables with Cronbach’s correlation coefficients
above 0.8 were considered for model classification purposes.
This practice conformed to previous guidelines.2®**

Procedure. Subjects were asked to observe a visual display
representing the transverse plane trunk position. This display
tracked the subjects’ twisting position by representing the
transverse angle as a dot on a screen display. The subject was
instructed to twist so their transverse plane position dot
moved within the target zones representing the desired asym-
metric condition. Subjects were given six instructions. These
were: 1) cross arms in front of chest, 2) stand with feet
shoulder width apart and keep them in the same location for
all conditions, 3) flex and extend trunks repeatedly in the
sagittal plane as fast as can be done comfortably while keeping
the transverse plane position dot between the target zone dots,
4) watch the dots at all times during testing, 5) if transverse
plane position falls outside the target zone, a tone will sound
and the trial will be repeated, and 6) move continuously until
instructed to “relax.” Data were collected up to 14 seconds for
each experimental run.

Data Analysis: Performance Measures. Custom software
developed in the Ohio State University Biodynamics Labora-
tory converted the electrical signal from each back monitor
into trunk position, velocity, and acceleration. The software

Table 3. Cronbach’s Alpha Correlation Coefficients for
20 Subjects

Task Asymmetries

15° 15° 30° 30°

Motion Features Zero Right Left Right Left
Sagittal range of motion .96 91 .90 94 95
Sagittal flexion velocity 96 94 .93 95 .95
Sagittal extension velocity .95 .94 93 95 .95
Sagittal flexion acceleration .95 .95 .94 .94 95
Sagittal extension acceleration .95 .96 95 93 .95
Lateral range of motion 88 12 89 A7 89
Lateral right velocity .92 62 87 57 89
Lateral left velocity 91 65 .84 13 93
Lateral right acceleration .92 .65 .86 12 83
Lateral left acceleration 91 61 .88 .78 87

Continuous Motion Characteristics

Continuous

Coefficients Position Velocity Acceleration
1 94 95 95
2 J7 .80 .85
3 78 84 88
4 87 86 93
5 .76 12 a7
6 713 A3 91

7 82 78 .89

8 a2 29 87
9 .82 33 89
10 .69 .57 . .19

Additional Motion Features

Twist position right 1.00

Twist position left 1.00

Twisting range of motion 1.00

Ability 1.00

Number of peak accelerations during flexion at task 0.74

asymmetry zero
Number of peak accelerations during extension at 0.87

task asymmetry zero

Coefficients describe repeatability of motion features at all five task asymme-
tries, continuous characteristics at task asymmetry zero, and additional motion
characteristics.

program graphically displayed trunk positions in each plane of
the body separately and permitted each motion component to
be independently analyzed throughout the exertion. The first
entire cycle (flexion and extension) during each trial was con-
sidered a warm-up motion and was discarded for analysis
purposes. The following four flexions were analyzed and av-
eraged. This process was completed for each plane of the
body. The analysis program computed the trunk motion char-
acteristic variables discussed earlier.

The feature extraction from the continuous movement pat-
terns required the following data processing. The middle three
cycles of movements were interpolated and averaged into 128
data points. Thus, the data were normalized with respect to
cycle time and permitted between-individual comparison.
Data matrices consisted of the 171 columns (number of pa-
tients) and 128 rows (number of data points for each patient’s
continuous profile—i.e., position, velocity, and acceleration).
The eigen value and eigen vectors of the correlation matrix of
the patient data matrices were computed by singular value
decomposition algorithm using MATLAB (MathWorks, Inc.
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Natick, MA). The eigen vectors represent the principal pat-
terns (bases), and the cumulative sum of eigen values reflect
the amount of explained variability of the original data ma-
trix. Using the original data matrices and the eigen vectors, the
weighting coefficient matrices were computed. Inspection of
eigen values indicated that the first five eigen vectors explained
more than 97% of the variability of the original data. The first
10 weighting coefficients were used to reconstruct the original
movement profiles. Using the eigen vectors extracted from the
patients’ data matrices, the weighting coefficients for normal
subjects also were computed. Thus, because the coefficients of
both healthy subjects and patients had the same bases, the
continuous patterns of motion, with a significant reduction in
the dimension of the original data (from 128 data points to 10
coefficients), could be represented. A more detailed description
of the method is provided in Marras et al.2! and Parnianpour
et al.33

Data Analysis: Analyses. The trunk motion characteristics
of the healthy and LBD groups were characterized through
descriptive statistics. Next, each of the trunk motion variables
measured by the LMM were normalized with respect to the
gender and age values from the database of healthy subjects.

Eight variable motion component models were created that
included normalized position, velocity, and acceleration com-
ponent measures in the sagittal, frontal, and transverse planes.
Thus, the free-dynamic nature of the trunk motion was eval-
uvated in three-dimensional space. Subject classification was
evaluated using four methods. Different methods were used
because the various methods varied in their ability to evaluate
the interactions between the variables. These evaluation tech-
niques included: 1) classification and regression trees, 2) clas-
sification using splines (ordinary spline), 3) conventional
discriminant analysis, and 4) a modified classification using
splines technique. Classification and regression trees is a non-
parametric classification technique”® that uses a binary tree
approach to partition the measurement space. Classification
using splines is a recent statistical method and is similar to the
neural network method. However, it is noniterative and based
on additive regression. It permits nonrigid boundaries between
classifications. Classification using splines also is much faster
than neural networks.® Discriminant analysis uses linear com-
binations of variables, but also is capable of considering a
limited amount of variable interaction. Finally, the modified
classification using splines method was developed by Bose®
and differs from the other methods in that it does not assume
additivity of the motion components and can account for a
greater degree of interaction between variables in its classifi-
cation decisions. Thus, these four classification techniques
vary in terms of rigidity of classification boundaries and the
amount of interaction they can accommodate in their analyses.
The first two techniques consider the main effects of the eight
motion component variables. The last two techniques permit
interaction, but at different levels, with the modified classifi-
cation using splines permitting the greatest amount of inter-
action consideration.

Misclassification error rates and cross-validation error
were used as the measures of model success. A standard tech-
nique for testing the validity of a model is to apply the model
to an independent test set. When an independent test-set sam-
ple is not available, a method’s performance should not be
judged by looking only at the re-substitution error (the mis-

classification error for the training set) because that will result
in overfitting. An acceptable alternative technique is cross-
validation, where the data are divided into random subgroups.
In this procedure, each subgroup is kept aside as a test set one
at a time and the remaining data are used to train the method.
The misclassification errors for the subgroups that are used as
test sets are recorded and pooled. The resulting cross-
validation error is a more reliable error estimate than the
re-substitution error.® Finally, a small independent data set
(37 subjects not part of the original data set) was used to
independently test the classification model that distinguished
between healthy subjects and LBD patients.

W Results

Quantification of LBD
As expected, trunk angular ROM, velocity, and accel-
eration in the sagittal plane decreased for all subjects as
the test condition became more asymmetric. Table 4
shows some descriptive statistics of the sagittal plane
ROM, velocity, and acceleration features for the healthy
subjects as well as for the 10 LBD groups. Only vari-
ables used later in the classification models are shown in
this table. However, similar descriptive statistics were
derived for all of the performance measures. Compared
with the normative group, the ability to perform the
various asymmetric conditions and the magnitude of the
performance measures (Table 4) were significantly re-
duced in the LBD group. The greatest differences be-
tween the healthy and LBD categories were related to
measures of the higher order derivatives of motion (i.e.,
velocity and acceleration). For example, the mean sag-
ittal plane ROM between the healthy and LBD groups
under the symmetric (zero) condition differed by only
5°. However, sagittal plane extension velocity and ac-
celeration measures were reduced by a mean of 49 deg/
sec and 251 deg/sec?, respectively, in the LBD group.

To determine whether trunk motion can serve as a
measure of LBD, it was necessary to evaluate how trunk
motion may be affected by LBD status and other factors,
such as age and gender. Therefore, the trunk motion
components were tested for significant differences as a
function of LBD status (LBD vs. normal), gender, and
age. Multivariate and univariate analyses of variances
indicated that all velocity and acceleration components
differed significantly as a function of LBD and age (at
the 0.001 level of significance). Range of motion was
found to be significant only as a function of gender, age,
and their interaction in the sagittal plane. It did not
differ as a function of LBD status. Sagittal plane trunk
angular velocity and acceleration also varied as a func-
tion of gender (at the 0.01 level of significance). Few
significant interactions of these variables were identified
at either level of significance. These findings suggest that
the higher level derivatives of motion (velocity and ac-
celeration) are much more sensitive measures of LBD
than ROM, which did not differ between healthy sub-
jects and patients with LBDs. In addition, we have
shown that only the measured motion characteristics of
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Table 4. Mean (Standard Deviation) of Selected Trunk Motion Features for Healthy Subjects and Patients With LBD

Category
Quebec Quebec Quebec Spondy- HNP  HNP Quebec Quebec
Motion Parameter Healthy 1 2 3 lolisthesis >3 =3  Stenosis 9.2 Nonorganic 11
Sum of ability across all five condi- 47 3.2 2.7 26 39 25 35 1.6 20 1.7 38
tions (no. of conditions per- 0.7) (1.0) {1.1) {1.0) (1.2) (1.4)  (1.6) (0.8) (1.6) (1.2) (1.6)
formed)
Twisting range {deg) 58 43 35 3 49 34 47 25 27 19 51
(6) (14) (14) (16) (15) (15) (15) (1) (17) (9) (23)
Sagittal range of motion at zero 36 37 29 30 40 30 29 27 27 28 33
condition (deg) (15) (15) (16) (13) (12) (1) (1) (12) (13) (14) (17)
Sagittal flexion velocity at zero 92 60 42 34 69 40 52 33 28 3 68
condition (deg/sec) (49) (36) (25) (21} (38) (30) (30) (19) (20) (19) (41)
Sagittal extension velocity at zero 96 61 47 33 10 45 55 35 30 32 66
condition (deg/sec) (48) (36) {29) (19) (34) (32) (30) (19) {(15) (22) (40)
Sagittal flexion acceleration at zero 404 208 139 106 281 135 189 m 82 85 269
condition {deg/sec?) (245) (167) (92) (71 (232) (131)  (116) (93) {50 (54) (183)
Sagittal extension acceleration at 414 208 149 100 292 138 185 17 90 99 257
zero condition {deg/sec?) (254) (141) (97) (65) (203) (109) (112) (127) (54) (79) (187)
Lateral range at zero condition 33 36 32 33 31 33 30 30 217 31 5.7
(deg) (27 (1.9) (1.8) (2.0) (1.2) 22) (20 (1.9) (2.1) (1.1) (36)
Lateral right velocity at zero condi- 12 9.0 6.9 6.1 15 6.4 14 5.4 46 5.2 14
tion (deg/sec) (9.9) (7.2) (3.8) (5.0} (3.1) {40) (5.0 (4.5) (3.7) (24) (8.3)

HNP = herniated nucleus pulposus.

a subject need be adjusted (where significant) for the
influences of the age and gender to quantify perfor-
mance relative to the normative group.

The mean values (and the associated standard devi-
ations) needed to normalize the trunk motion variables
(for age and gender) used in the classification models are
shown in Table 5, except for the weighting coefficients
for the continuous variables (available on request). This
normalization of the motion characteristics was per-
formed to characterize the various LBD status measures
(1.e., ROM, velocity, acceleration) in common terms.

This normalization process permits the extent of an
LBD to be quantitatively described by characterizing the
patient’s trunk motion characteristics relative to the ex-
pected trunk motion characteristics of the healthy
group. Thus, LBDs can be described in terms of the
percent of the normative group’s motion characteristics,
as shown in Table 6, for the variables used in the clas-
sification models. For example, patients in the HNP
classification (>3) produced 78% of the ROM of the
healthy group’s sagittal ROM at the zero condition once
matched for age and gender relative to the healthy

Table 5. Mean (Standard Deviation) Trunk Motion Features of the Healthy Subjects Shown As a Function of Gender

and Age
Age
Male Female
Motion
Plane Direction Variable 20s 30s 40s 50s 60s 20s 30s 40s 50s 60s
Range 38.71 AR Y 42,75 4276 37.60 38.64 31.41 29.28 26.47 23.88
(deg) (41.41) (13.57) {14.35) (16.58) {15.54) (17.04) (12.82) (10.61) (7.72) {9.46)
Sagittal  Flexion Velocity 104.12 113.88 107.53 101.75 80.25 100.02 82.34 7245 61.62 4791
(deg/sec) (51.98) (49.86) (47.15) (49.38) (45.51) (53.74) (37.11) (28.73) (19.54)  (15.87)
Extension  Velocity 106.54 120.94 114.84 105.16 81.99 104.50 90.95 78.31 67.79 49.64
(deg/sec) (48.09) (53.82) (44.01) (46.26) {42.88) (53.43) (39.96) (29.35) (22.14)  (18.38)
Flexion Acceleration 475.49 541.90 473.56 42540 299.02 435.59 354.86 335.70 257.09 19471
{deg/sec’)  (250.44)  (287.85)  (248.38)  (22240) (181.32)  (270.85)  (175.65)  (144.80)  (117.98)  (72.27)
Extension  Acceleration 490.93 552.06 493.27 417.55 322.76 445.10 373.01 318.66 291.78 188.36
(deg/sec?)  (269.25)  (302.13)  (248.04)  (206.49) (264.20)  (248.90)  (187.90)  (163.54) (14652  (90.72)
Range 372 4.25 3.14 374 269 2.95 3.22 2.69 287 267
(deg) (3.22) (3.70) {2.55) (2.77) {1.59) {2.05) (3.56) {1.46) (1.61) (1.86)
Lateral Right Velocity 13.29 15.49 10.72 1273 9.44 12.72 11.53 10.96 9.83 8.20
(deg/sec) (10.61) {13.66) (7.95) (8.02) {8.22) (12.37) (11.58) (7.07) (4.83) (4.57

Any motion features of LBD patients can be normalized by dividing the measured value by the age- and gender-matched mean value reported in this table.
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Table 6. Normalized Patient Performance for Selected Motion Characteristics as a Function of LBD Classification

Categories

Quebec  Quebec  Quebec Spondy- HNP HNP

Quebec Quebec

Motion Parameter 1 2 3 lolisthesis >3 =3 Stenosis 9.2 Nonorganic "

Sum of ability across all five 66 54 52 80 50 74 32 42 34 78
conditions (no. of condi-
tions performed)

Twisting range of motion 75 60 55 85 60 80 46 46 32 85

Sagittal range of motion at 100 80 82 100 78 81 85 74 72 92
zero condition

Sagittal flexion velocity at 65 4 38 70 4 53 46 30 32 72
zero condition

Sagittal extension velocity at 85 46 34 67 43 43 48 3 3 66
zero condition

Sagittal flexion acceleration 51 33 27 65 31 43 39 20 19 65
at zero condition

Sagittal extension accelera- 52 3 24 64 31 40 38 22 2t 60
tion at zero condition

Lateral range at zero condi- 100 100 97 90 98 88 100 85 88 180
tion

Lateral right velocity at zero 19 56 51 59 51 60 56 41 42 m
condition

First coefficient of the posi- 100 61 39 90 60 68 56 27 38 56
tion profile

First coefficient of the veloc- 64 43 30 65 40 51 26 21 23 57
ity profile

First coefficient of the ac- 45 29 17 52 27 38 14 " 13 50
celeration profile :

Values indicate the percentage of the mean normal group’s performance.

HNP = herniated nucleus pulposus.

group. On the other hand, the sagittal plane extension Classification of LBD

velocity and acceleration at the zero condition were  The normalized trunk motion characteristics were used
43% and 31% of the healthy group’s age- and gender-  as a basis for classifying the 510 subjects who partici-

adjusted values, respectively. pated in this experiment into the various healthy and
Stage-One S oo s

Normal LBD
Subgroup Patients
Stage-Two

Figure 2. The stage two model
used to categorize patients with
LBDs. The stage one model sep-
arates healthy subjects from LBD
patients (as a group), whereas
the stage two model categorizes
the LBD patients into one of 10

Ability
Twisting ROM

Sagittal ROM @ Zera Condition

Sagittal Extension Velocity @ Zero Condition
Sagittal Extension Acceleration @ Zero Condition
Continuous Velocity 1

Continuous Acceleraton 1

Lateral Right ROM @ Zero Condition

Stage-Two Model Variables

{Specific LBD Classifications)
Ability
Twisting ROM
Sagittal Flexion Velocity @ Zero Condition
Sagittal Flexion Acceleration @ Zero Condition
Continuous Position 1
Continuous Velocity 1
Continuous Acceleraton 1
Lateral Right Velocity @ Zero Condition

LBD classifications. Quebec 1 Quebec2 Quebec3  Spondylolisthesis HNP >3 HNP <=3 Stenosis Quebec 9.2 Non-organic  Quebec 11
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Table 7. Stage One (LBD vs. Healthy) Classification and Cross Validation Error Shown as a Function of

Classification Methad

Classification and

Classification

Discrimination Modified Ciassification

Regression Trees Using Splines Function Using Splines
Original data . 1.2% 6.3% 8.6% 4.9%
Cross validation of original data 9.0% 11.8% 11.0% 5.5%

LBD groups. As shown in Figure 2, a two-stage analysis
was performed to accomplish this goal. We assumed
that only highly repeatable measures of trunk motion
could be used in the model. Two models were developed
based on biomechanical plausibility, stepwise discrimi-
nant analysis, and numerous simulations. The eight-
variable model shown in stage one of Figure 2 distin-
guishes well between healthy subjects and LBD patients.

The classification and cross-validation results of the
Classification and Regression Trees, CUS, discriminant
analysis, and MCUS methods for the stage one objective
(LBD patients vs. normal subjects) are shown in Table 7.
Most of the methods tested achieved a high degree of
accuracy in classifying healthy subjects versus patients.
However, the MCUS method resulted in slightly better
(lower) classification and cross-validation error.

The stage two model attempted to classify the LBD
patients into specific diagnostic categories. The variables
employed by this model are shown in Figure 2. Model
performance is shown in Table 8 as a function of the
various classification methods. Only the MCUS method
could reasonably classify the patients into the appropri-
ate categories when both classification and cross-
validation measures were considered. This classification
method was able to correctly classify over 99% of the
patients in the original (training) data set and misclas-
sified only one patient out of 171. The MCUS technique
was the only method that also produced a reasonable
cross-validation measure. About 30% of the patients
were misclassified in this cross-validation. Table 9
shows the sensitivity and specificity for the cross-
validation measure. Specificity was excellent, with an
average over the 10 categories of higher than 96%.
Sensitivity was lower, with an average of 69%. Table 10
shows the cross-validation classification matrix for stage
two. This table shows that overall cross-validation clas-
sification performance varied from 55% to 88%, with
the worst misclassification cell miscategorizing only
three patients. In addition, 20 of the 35 misclassification
cells involved the misclassification of only one patient.

W Discussion

Three important issues have been addressed in this
study. First, through the repeatability study, we found
that the trunk motion characteristics examined were
largely highly repeatable. Cronbach’s correlation coef-
ficients were used to investigate repeatability because
they are more appropriate for time-indexed data such as
ours. The Cronbach’s correlation coefficients indicated
there was excellent repeatability and reliability, partic-
ularly for the motion components in the zero (symmet-
ric) condition. All Cronbach’s correlation coefficients in
this condition were 0.88 or greater in the sagittal and
frontal planes. In fact, all Cronbach’s correlation coef-
ficients for the trunk angular velocity and acceleration
measures were 0.91 or greater, indicating that the higher
order derivatives or motion (velocity and acceleration)
were the most repeatable measures. All sagittal plane
motion components also exhibited excellent repeatabil-
ity (Cronbach’s correlation coefficient of 0.9 or greater)
in the asymmetric (15° and 30°) testing conditions. The
remaining frontal plane motion Cronbach’s correlation
coefficients were for the most part much lower, indicat-
ing that frontal plane repeatability was much more con-
sistent in the zero testing condition compared with the
asymmetric testing conditions.

The continuous motion measures were evaluated
only in the sagittal plane. These were found to be most
repeatable when the first four coefficients of velocity and
acceleration were considered. All but two of the 10
acceleration coefficients also yielded acceptable Cron-
bach’s correlation coefficients. Collectively, these results
indicate that measuring free dynamic motions under
these unloaded (no external resistance) conditions pro-
duces many highly repeatable motion components. It
has been recommended by Nelson and Nestor?® and
Waddell et al** that only coefficients over 0.8 are ac-
ceptable as measures of repeatability. We found that in
the sagittal and lateral planes of the trunk there were 39
variables with a coefficient of 0.9 or greater, indicating

Table 8. Stage Two (Specific LBD Categories) Classification and Cross Validation Error Shown as a Function of

Classification Method

Classification and

Classification

Discrimination Modified Classification

Regression Trees Using Splines Function Using Splines
Original data 76.6% 15.8% 34.9% 0.6%
Cross validation of original data 18.4% 75.4% 84.3% 30.9%
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Table 9. Specificity and Sensitivity of Modified
Classification Using Splines Cross Validation Analysis
Results

Category Specificity (%) Sensitivity (%)
Quebec 1 - 98 88
Quebec 2 97 65
Quebec 3 97 65
Spondylolisthesis 99 75
Herniated disc pain >3 91 73
Herniated disc pain <3 99 83
Stenosis 94 61
Quebec 9.2 96 64
Nonorganic 94 59
Quebec 11 99 55

that these motion measures account for over 80% of the
variance between testing sessions. Thus, many reliable
motion-related variables are available for consideration
in the quantification and classification models.

The second issue addressed was the quantification of
LBDs. Because we established that many repeatable mo-
tion components can be considered measures of ability,
we could use this information to quantify the status of
an LBD patient. We have determined that once trunk
motion components are adjusted for age (and in some
cases gender), they can be compared with the normative
database and used as a quantitative measure of LBD.
These repeatable trunk motion measures are able to
quantify the functional limitations associated with var-
ious LBD disease states in common terms (percent of

expected normal ability) and can serve as a measure of
the extent of the disorder and as a measure of rehabil-
itative progress.

The final issue addressed was the classification of
LBDs. We have developed a two-stage model that em-
ploys reliable trunk motion measures, reflecting the
three-dimensional dynamic action of the trunk in a
MCUS system, to successfully classify subjects into 10
anatomic-and symptom-based LBD groups. The first
stage of the model was used to distinguish LBD patients
from healthy subjects. Only the zero degree test condi-
tion, along with a measure of twisting range and ability,
was needed to accurately identify general LBD. This
model was able to correctly identify 94% to 95% of our
510 healthy subjects and LBD patients. A small inde-
pendent data set (different from the original data set) of
16 healthy subjects and 21 LBD patients was used to
further explore the stage one classification validity. The
stage one model was able to correctly classify 90% of
this small validation group, indicating that the model
holds great promise for correctly identifying LBD pa-
tients. Further independent validation tests are neces-
sary to fully validate the model.

The success of the stage one model in identifying LBD
patients is particularly impressive when compared with
others who have attempted to identify LBD patients
using other means. DeLuca,® using spectral measures of
electromyography, was able to correctly identify only
84% of healthy subjects and 91% of LBD patients,

Table 10. Classification Matrix for the Stage Two Modified Classification Using Splines Cross Validation Results
Showing the Number of Subjects and Percentage of the Subject Population Classified Into Each Category

Predicted Group Membership

Quebec  Quebec  Quebec Spondy- HNP  HNP Quebec Quebec
Actual Group Membership 1 2 3 lolisthesis >3 =3 Stenosis 9.2 Nonorganic 1 Totals
Quebec 1 14 0 0 0 0 0 1 0 1 0 16
88% 0 0 0 0 0 6% 0 5% 0
Quebec 2 1 1" 0 0 2 0 1 1 0 1 17
6% 65% 0 0 12% 0 6% 6% 0 6%
Quebec 3 0 0 1 0 2 0 2 1 1 ] 17
0 0 65% 0 12% 0 12% 6% 6% 0
Spondylolisthesis 1 0 0 12% 1 0 1 0 1 0 16
6% 0 0 5% 6% 0 6% 0 5% 0
HNP >3 1 3 ™ 0 22 0 3 0 0 0 30
3% 10% 3% 0 3% 0 10% 0 0 0
HNP =<3 0 0 0 0 0 10 0 1 0 1 12
0 0 0 0 0 83% 0 8% 0 8%
Stenosis 0 0 2 1 3 0 16 2 2 0 26
0 0 8% 4% 1% 0 61% 8% 8% 0
Quebec 9.2 0 0 0 0 2 0 0 7 2 0 1"
0 0 0 0 18% 0 0 64% 18% 0
Nonorganic 0 1 2 0 1 0 1 2 10 0 17
0 6% 12% 0 6% 0 6% 12% 59% 0
Quebec 11 0 0 0 0 2 2 0 0 0 5 9
0 0 0 0 2%  22% 0 0 0 55%
m

Bold numbers along the diagonal indicate correct classifications.

The percentage ciassified is rounded to the nearest whole number and may not sum to 100.

HNP = herniated nucleus pulposus.
* The location of the only misclassification in the original data.




Classifying Disorders Using Trunk Motion * Marras et al 2541

although the results were not cross-validated. The sub-
ject population used in this study was extremely small
compared with our study. Although his method, as well
as ours, attempts to evaluate the status of the musculo-
skeletal system, we believe that our method is successful
because it considers performance in association with
dynamic motion, whereas spectral electromyography
must be performed under static conditions. As shown in
this study, dynamic measures are very repeatable. Klein
et al'® used discriminant analysis to classify LBD as a
function of ROM, isometric extension strength, and
spectral electromyography. Sensitivity was found to be
66% and specificity was 71%. Also, numerous studies
reported in the literature have failed to show differences
between LBD patients and healthy subjects.>31%:25
28,31,35.41 Because most of these studies were based on
ROM, we believe that such measures do not hold much
promise for classification purposes. Finally, Newton et
al*® and Masset?® used various measures of isometric as
well as dynamic strength to distinguish between healthy
subjects and LBD patients. These measures also resulted
in specificity and sensitivity measures that were not as
robust as our stage one model results.

The stage-two portion of our model results in the
only model (to our knowledge) able to quantifiably clas-
sify subjects into specific LBD categories. This model
uses six variables based on the zero degree (symmetric)
testing condition and two variables related to the ability
to twist the trunk. This model also used the MCUS
technique. The error rate of the model was an impres-
sive 0.6%. Cross-validation studies have shown that
expected validation also is acceptable, with a cross-
validation error of 30.9%. Hence, we expect that in an
independent validation study, about 70% of patients
could be correctly classified using this model. The cross-
validation sensitivity and specificity of the stage-two
model was superior compared with existing imaging
techniques.

It has been estimated that imaging techniques can
identify the source of an LBD less than 20% of the
time.?” The classification matrix showing the classifica-
tion performance of our MCUS model (Table 8) indi-
cates that even a herniated disc, one of the more elusive
categories, was classified correctly between 73% and
83% of the time, depending on pain level. We believe
that our model is successful where others are not for
several reasons. First, we used model components that
were sensitive to musculoskeletal trunk status and were
highly repeatable. Second, the spline methods are able to
account for nonlinear boundaries between groups. For
example, Figure 3 shows two of the stage one model
variables, with the boundaries defined by discriminant
analysis (Figure 3A) and the MCUS method (Figure 3B).
The spline method can account for significantly more
nonlinearities. This becomes particularly important
when considering that the actual stage one model has
eight variables and this technique could more accurately
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Figure 3. A representation of how different classification methods
separate LBD patients (L) and healthy subjects {N) as a function of
two motion variables (transverse ROM and sagittal ROM). Linear
discriminant analysis (A) constructs a linear boundary and thus
misclassifies a large number of patients as healthy, while the
MCUS (B) generates complex nonlinear boundaries that minimize
the misclassification. These boundaries are much more complex
(and cannot be represented here) in the eight-variable models.

describe the complex trends found at the boundaries.
Third, we were able to account for the specific interac-
tions associated with three-dimensional motion using
the MCUS technique. This technique permits us to not
only observe general measures of velocity or accelera-
tion, as other techniques can do, but the interaction
permits us to account for acceleration at a specific ve-
locity as a patient moves through a trunk-specific angle.

We have found that accounting for interactions is
critical in the stage two classification. This adjustment
improves model cross-validation by an average of 48%
compared with classification methods that cannot ac-
count for this high degree of interaction between motion
components. Thus, we can conclude from this study that
unique patterns of ROM, velocity, and acceleration or
“motion signatures” are associated with various LBD
classifications, and examination of these interactive pat-
terns (compared with examination of ROM, velocity, or
acceleration independently) accentuates the differences
between LBD categories. As an example, Figures 4A~C
show the continuous ROM, velocity, and acceleration
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Figure 4. (A) Range of motion, (B) angular velocity, and {C} angu-
lar acceleration of the healthy group (means = 1 SD; shaded)
compared with the mean profiles of the spinal stenosis, HNP >3,
and Quebec 1 groups. By observing the combined performance
among these three measures at specific points in time (line d or ¢),
an appreciation for the interactive nature of LBDs can be gained.
Note how the relative position of each LBD changes relative to the
healthy group between the three measures at different points in
time.

(1 SD) activity, respectively, for the healthy group
(shaded area) compared with the means of the Quebec
1, spinal stenosis, and HNP >3 groups. By simulta-
neously comparing the instantaneous ROM, velocity,
and acceleration at points throughout the cycle (indicat-
ed by vertical lines through all three figures), dramati-
cally different combinations (interactions) of the three
motion variables are evident. The MCUS is sensitive to

these types or differences and to higher order interac-
tions. These analytical models could not have been de-
veloped without quantitative measures of three-dimen-
sional dynamic performance.

Like other sophisticated methods such as the neural
network method, the mathematical expressions for the
final model used by the spline methods are quite com-
plex because they consist of spline functions involving
interactions. Therefore, we have reported the original
variables used in the final model (Figure 2). For future
classifications, the measurements can be fed into the
classifier, which will return the predicted class for the
subject. The codes for these programs are available on
request.

Basis of Trunk Motion Changes
Although the present study was not designed to explore
the source of the trunk motion changes associated with
an LBD, we can speculate about how these changes
might occur. The trunk motions examined in this study
may be a result of biomechanical as well as learned or
cognitive processes. Many specialists in human gait can
gain insight into the nature of a gait disorder by exam-
ining motion changes during walking. We believe that
our motion components represent similar types of bio-
mechanical events that we have been able.to precisely
quantify. Biomechanically, changes in trunk motion
characteristics (compared with a healthy group) may
reflect changes in the coordinated recruitment of the
neuromuscular system. Increased co-activation could
stiffen the trunk’s musculoskeletal system and signifi-
cantly slow trunk velocity and acceleration characteris-
tics." Changes in trunk motion characteristics also can
signal sensitivities to tissue loading. Sudden increases or
decreases in acceleration at a particular point through-
out a movement also could indicate a biomechanical
response to tissue sensitivity. Because our model can
account for such interactions, we believe that some of
the observed results indeed may reflect such tissue sen-
sitivities. Unique changes in motion component interac-
tions also may reflect abnormalities in the structures of
the spine. We suspect that changes in spine structural
integrity and sensory and proprioceptive pathways may
result in unique combinations of motion components as
various points in space are passed. Again, our model can
account for sensitivities to such interactions.

Why does this free-dynamic technique of measuring
motion assessment offer so much more information
about the musculoskeletal system compared with tradi-
tional strength-based motion measurement systems? We
believe that because resistance or loads are imposed on
the spine in these strength-based systems, they may
mask many of the subtle, well developed motion char-
acteristics we can monitor by testing an unloaded trunk
for three-dimensional motion characteristics. We also
believe that measuring trunk motion by any means with
similar system resolution (i.e. video, infrared, magnetic,
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etc.) under unloaded free dynamic conditions would
produce similar results.

These results also may reflect cognitive processes as
well as biomechanical processes. Cognitive processes
such as learned guarding behavior or automaticity de-
velop in response to pain sensitivities or because of
precautionary behavior associated with hypersensitivity
to pain. Wolf et al*>* postulated that compensatory
postural abnormal neuromuscular patterns (such as
guarding) that develop over time may alter the normal
neuromuscular function that will affect trunk motion
characteristics. Our model may have the potential to
identify such unique behavior, although we did not test
that hypothesis here.

Practical Uses of the Model
Perhaps the greatest benefit of this model is that it could
be used in conjunction with existing techniques to en-
hance assessment of LBDs. For example, this model
could be used as a screening tool to narrow the range of
possible LBD classifications. Then, based on model pre-
dictions of probabilities associated with specific classi-
fications (classification matrix shown in Table 10), the
physician could prioritize requests for specific tests and
procedures that may further validate the diagnosis.

Our model has shown that under clinical circum-
stances it would not be necessary to test patients under
all of the trunk asymmetry conditions. This study has
shown that excellent predictions of classification can be
gained by studying the three-dimensional trunk motion
components at the zero condition, along with an indi-
cation of twisting motion range and ability to flex in
deviated twisting positions. Neither the stage one nor
stage two model of this study used the motion compo-
nents associated with the 15° or 30° testing conditions,
even though many of these variables are highly repeat-
able. Thus, practical usage of this technology may re-
quire a relatively quick and efficient test to assess LBD.

Recovery Index
Functional quantification of the patients is crucial for
optimizing conservative treatment. Such quantification
can sharpen the clinician’s understanding of the func-
tional deficits and help identify the appropriate dimen-
sions of performance that need the greatest attention,
(i.e., a patient who has adequate range of motion but
who has only 50% of normative extension velocity).
The functional deficits are time dependent and should be
updated over the course of the rehabilitation. The
strength and motion parameters are psychophysical
measures and as such represent the patient’s behavior in
terms of what the patient is able to perform given the
associated pain or disease. The outcome of these perfor-
mances will depend on pain inhibition, fear avoid-
ance,* psychological distress,*? and illness behavior,***
in addition to physical or sensory disorder. Thus, dy-
namic motion characteristics may provide sensitive out-
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Figure 5. (A) Range of motion, (B) extension velocity, and (C)
extension acceleration of 13 patients with LBD (means = 1 SD;
shaded) compared with the healthy group performance {means =+
1 SD) longitudinally over three office visits. Note that recovery
occurs sequentially. Range of mation returns to normal range first,
followed by velocity and finally acceleration.

come measures of patient recovery in multidisciplinary
rehabilitation programs.!¢ ’

To test this hypothesis, the present study also col-
lected preliminary observations on some LBD patients
longitudinally through the course of the LBD so we
could explore the prognosis value of the dynamic pa-
rameters of motion. Thirteen LBD patients were tested
during three visits to their physician over the course of
their disorder. We observed that LBD recovery occurred
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in a specific order. The normalized performance of these
LBD patients relative to the healthy group’s sagittal
ROM, extension velocity, and accelerations are shown
in Figures SA~C, respectively, for the zero test condi-
tion. Seventy-seven percent of patients had ROM within
the normal range (within the threshold defined as the
mean * 1 SD of the healthy group) in the initial visit,
whereas only 31% and 8% of the patients’ velocities
and accelerations, respectively, were within the normal
range.

We observed that patient recovery can be assessed by
the improvement in performance parameters during the
second and third visit. For example, by the third visit,
85% of the patients’ ROM had returned to the normal
range, whereas 54% and 38% of the velocity and ac-
celeration measures, respectively, were within the nor-
mal range by the third office visit. This indicates that
recovery initially occurs in terms of ROM. However,
velocity and acceleration characteristics return to nor-
mal much later during the recovery process. Thus, we
observed that the rate of improvement can be charac-
terized more via a return to a normal range of the
dynamic parameters compared with ROM. The func-
tional restoration may be a function of reduction in the
inhibitory afferent or efferent signals that influence the
control strategies of trunk movements. In addition, it
can be argued that the dynamic parameters are more
sensitive in portraying changes in the functional state of
LBD patients.

Limitations
Although we have demonstrated that trunk motions
may serve as a quantitative measure of disability, this
concept is in its infancy and requires more experimental
research before it evolves into a more mature measure.
A major complication is the tremendous complexity of
the spine. The large number of degrees of freedoms in
the passive spine, in addition to numerous muscles that
span each motion segment, allow the central nervous
system numerous possible motions. Thus, the kinematic
and kinetic redundancies of the spine may limit the
ability to correctly specify the insulted tissue via motion
analysis. However, we can accurately quantify the func-
tional trunk performance compared with the normative
database, regardless of the source and functional deficit.

Several limitations must be considered in evaluating
the efficacy of our findings. First, this study represents
an initial 6-year effort whose aim was to find an accu-
rate means of quantifying and classifying LBD. For such
a system to become common practice, a formal valida-
tion using a new, large independent data set is required.
This validation is the goal of the next phase of this
project. Although cross-validation is a statistically ac-
ceptable validation measure, a formal validation involv-
ing a much larger sample of LBD patients, compared
with this “training” data set, is needed to ensure the
model is accurate and sensitive. Our small (37 subject)

independent data set provided a preliminary indication
that the model can discriminate well between LBD and
healthy subjects. However, the data set was too small
for truly assessing the degree of accuracy in the stage
one model or for attempting a stage two classification
validity test. This study also indicated that the MCUS
technique was the only one capable of reasonably dis-
tinguishing between LBD classifications in cross-valida-
tion testing. This technique uses the processed data from
the CUS technique as its input. Thus, it may be possible
that the cross-validation estimate of MCUS was biased
toward optimality. Only a new independent data set can
formally validate these findings.

Second, it is unclear how well this motion-based clas-
sification system would perform using patients from a
typical practice who have not been prescreened for psy-
chological factors. Third, we have only tested patients
with chronic LBD. It is not known whether a motion-
based classification system such as this would be suc-
cessful when used for patients with acute LBD whose
compensatory motion patterns may still be developing.
During the acute phase of low back pain, the symptom
generation and the state of stress and strain in the ana-
tomic tissues are much more related than in the chronic
phase of low back pain, when illness behavior could
become an issue. We believe that it may work even
better than with the chronic LBD patients used in this
study because acute injury motion patterns would show
less symptom magnification and less generalized trunk
muscle deconditioning. This situation may increase the
likelihood that the motion characteristics will be related
to specific pain locations in the trunk. Recent imaging
investigations'~1>*% have suggested that specific pat-
terns of movement among the motion segments in the
cervical and lumbar spines of patients are present. How-
ever, noninvasive techniques would not permit interseg-
mental motion to be analyzed triaxially during the dy-
namic complex (asymmetrical) conditions tested here.
Therefore, although our motion variables are more
global, mostly reflecting the lumbar motion, the correct
classification of 70% suggests that it also may partially
reflect the specific patterns separating LBDs. In addition,
similar dynamic motion parameters were able to predict
the risk associated with industrial jobs.2> We are merg-
ing these two databases to address the use of the ergo-
nomics studies (quantification of the task demands) and
the clinical functional capacity evaluation.

m Conclusion

The current socioeconomic climate demands increased
quality of healthcare delivery while maintaining costs
because the present rapid growth in healthcare expenses
cannot be sustained. As part of this effort, the need to
quantify trunk performance was realized.??>® This need
soon will grow to include quantification of the rehabil-
itation processes. However, quantification must include
credible measures.?® For healthcare costs to be curtailed,
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clinicians must have sensitive and reliable tools for sci-
entifically and critically evaluating the activities of the
multidisciplinary rehabilitation team and their patients.
We envision that the task of LBD management will
consist of several stages—objectively measuring the
present state of trunk performance, making a diagnosis,
quantifying the functional deficits, planning a definite
goal (target), selecting the optimal effective treatment
(conservative or surgical), prescribing a quantifiable
dose of therapeutic exercise, and providing feedback for
positive reinforcement of progress and functional resto-
ration with an operant conditioning behavioral ap-
proach,!*1?

The present study has indicated that higher order
trunk motion components can provide a tool to serve as
such a reliable quantitative measure. We also have dem-
onstrated that these measures can be used in valid mod-
els for classifying LBDs. Thus, this work contributes to
the first three stages of the rehabilitation process. Future
independent validation studies are needed to fully de-
velop this approach.
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